TABLE OF CONTENTS

PREFACE (คำนำ)
ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
NOTATION
LIST OF TABLES
LIST OF FIGURES
CHAPTER 1
1.1 Research context
1.2 Research objectives
1.3 Research methods
1.4 Expected outcome
1.5 Layout of report
CHAPTER 2
2.1 Introduction
2.2 Waste tyres
2.3 Incinerator bottom ashes
2.4 Earthquake
2.5 Seismic isolation techniques
CHAPTER 3
3.1 Introduction
3.2 Test materials
3.2.1 Sand
3.2.2 Incinerator bottom ashes
3.2.3 Tyre chips

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PREFACE (คำนำ)</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>NOTATION</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>1</td>
<td>Research context</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Research objectives</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Research methods</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Expected outcome</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Layout of report</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Waste tyres</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Incinerator bottom ashes</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Earthquake</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Seismic isolation techniques</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Test materials</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Sand</td>
<td>29</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Incinerator bottom ashes</td>
<td>30</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Tyre chips</td>
<td>32</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>3.2.4 Explosive</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>3.2.5 Model houses</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>3.3 Equipment</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3.4 Testing methods and programmes</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>3.4.1 Testing methods and procedures</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>3.4.2 Testing programmes</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>4.2 Results and discussion</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>5.1 Conclusions</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>5.2 Ground Vibration</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>5.3 Recommendation for Future Work</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES 62
NOTATION

\[C_g \] Coefficient of curvature

\[C_u \] Coefficient of uniformity

\[D_{10} \] Maximum particle size that has 10% of mass that is smaller

\[D_{30} \] Maximum particle size that has 30% of mass that is smaller

\[D_{50} \] Average particle size

\[D_{60} \] Maximum particle size that has 60% of mass that is smaller

D-A0
Dry, IBA = 0, Tyre = 100

D-A40
Dry, IBA = 40, Tyre = 60

D-A75
Dry, IBA = 75, Tyre = 25

D-A90
Dry, IBA = 90, Tyre = 10

D-A95
Dry, IBA = 95, Tyre = 5

D-A100
Dry, IBA = 100, Tyre = 0

W-A0
Wet, IBA = 0, Tyre = 100

W-A40
Wet, IBA = 40, Tyre = 60

W-A75
Wet, IBA = 75, Tyre = 25

W-A90
Wet, IBA = 90, Tyre = 10

W-A95
Wet, IBA = 95, Tyre = 5

W-A100
Wet, IBA = 100, Tyre = 0
LIST OF TABLES

TABLE 2. 1 COMPOSITIONS FOR TYRES (WRAP, 2006) 7
TABLE 2. 2 SCRAP TYRES STATISTICS FOR EUROPE 2006 (RESCHNER, 2008) 9
TABLE 2. 3 TERMS FOR RECYCLE TYRES HAVING DIFFERENT SIZES (CEN, 2004; ASTM, 1988; EDESKÄR, 2006) 10
TABLE 2. 4 SOLID WASTES DURING 2010-2011 (PCD, 2012; BOONPAN ET AL., 2013) 12
TABLE 2. 5 PARAMETERS FOR STUDYING THE BEHAVIOUR OF FOUNDATION SOIL DURING EARTHQUAKE SHAKING (TSANG ET AL., 2010) 26
TABLE 2. 6 AFSD 27
TABLE 3. 1 SIEVE ANALYSIS RESULT FOR THE SAND 30
TABLE 3. 2 SIEVE ANALYSIS RESULT FOR THE INCINERATOR BOTTOM ASH 31
TABLE 3. 3 SIEVE ANALYSIS RESULT FOR THE TYRE CHIPS 33
TABLE 3. 4 LIST OF ALL TEST CONFIGURATIONS 41
TABLE 4. 1 MAXIMUM ACCELERATIONS FOR THE DRY CONDITIONS 44
TABLE 4. 2 MAXIMUM ACCELERATIONS FOR THE WET CONDITIONS 44
LIST OF FIGURES

FIGURE 2.1 TYPICAL PARTS OF A PASSENGER CAR TYRE (WRAP, 2006) 7
FIGURE 2.2 TYRE FIRE IN STANISLASU COMPANY, CALIFORNIA IN 1999 (RESCHNER, 2008) 8
FIGURE 2.3 TYRE SHREDS EMPLOYED AS FILL IN ROAD EMBANKMENT (EDESKÄR, 2006) 10
FIGURE 2.4 TYRE SHREDS EMPLOYED AS THERMAL INSULATION IN ROAD EMBANKMENT (EDESKÄR, 2006) 11
FIGURE 2.5 TYRE SHREDS EMPLOYED AS DRAINAGE LAYER IN ROAD EMBANKMENT (EDESKÄR, 2006) 11
FIGURE 2.6 TYRE SHREDS EMPLOYED AS TROTTING TRACK IN NANESTAD NORWAY AND Paddock (EDESKÄR, 2006) 11
FIGURE 2.7 DETAILS OF INCINERATOR BOTTOM ASHES BY SEM (BOONPHAN ET AL., 2013) 13
FIGURE 2.8 PLATE TECTONICS (TOP) DISTRIBUTION OF EARTHQUAKES AROUND THE WORLD (BOTTOM) (ELNAS HI AND SARNO, 2008) 15
FIGURE 2.9 SECTION SHOWING TYPES OF BOUNDARIES (ELNAS HI AND SARNO, 2008) 16
FIGURE 2.10 SYMBOLS EXPLAINING TERMS FOR EARTHQUAKE LOCATIONS (ADAPTED FROM KRAMER, 1996) 16
FIGURE 2.11 PATHS OF BODY WAVES (LEFT) AND SECONDARY WAVES (RIGHT) (ELNAS HI, 2008; BOLT, 2004) 18
FIGURE 2.12 PATHS OF SURFACE (LOVE) WAVES (LEFT) AND RAYLEIGH WAVES (RIGHT) (ELNAS HI, 2008; BOLT, 2004) 18
FIGURE 2.13 LOCATING AN EARTHQUAKE POSITION (KRAMER, 1996) 20
FIGURE 2.14 DETERMINATION OF DAMPING RATION FROM HYSTERESIS LOOP (DAS, 1993) 21
FIGURE 2.15 HORIZONTAL DEFORMATION OF ELASTOMERIC BEARING (A) EXAMPLE OF ELASTOMERIC BEARING (B) (WARN AND RYAN, 2012) 23
FIGURE 2.16 BEARING WITH FRICTIONAL PENDULUM (WARN AND RYAN, 2012) 24
FIGURE 2.17 SECTION OF FCLJC BUILDING SHOWING LOCATIONS OF ACCELEROMETERS AT 6, 7, 9, AND 12 (LEW AND BOWMAN, 1988) 24
FIGURE 2.18 ACCELERATION VERSUS TIME DURING EARTHQUAKE SHAKING DUE TO THE REDLANDS EARTHQUAKE ON 2 OCTOBER 1985 (LEW AND BOWMAN, 1988) 25
FIGURE 2. 19 FINITE ELEMENT MESHES FOR THE STRUCTURAL ANALYSIS OF STRUCTURE AND FOUNDATION SOIL WHEN ENCOUNTERING EARTHQUAKE (TSANG ET AL., 2010)25
FIGURE 2. 20 DISPLACEMENT AND ACCELERATION VS. TIME BEHAVIOUR FOR (A) ROOF TOP AREA (B) FOUNDATION (C) FIRST FLOOR (D) PERCENTAGE DECREASING FOR ACCELERATION AND DISPLACEMENT (TSANG ET AL., 2010) 27
FIGURE 2. 21FAS 27
FIGURE 3. 1 PHOTO OF THE SAND 29
FIGURE 3. 2 PARTICLE SIZE DISTRIBUTION CURVE FOR THE SAND 30
FIGURE 3. 3 PHOTO OF THE INCINERATOR BOTTOM ASH 31
FIGURE 3. 4 PARTICLE SIZE DISTRIBUTION CURVE FOR THE INCINERATOR BOTTOM ASH 32
FIGURE 3. 5 PHOTO OF THE TYRE CHIPS 33
FIGURE 3. 6 PARTICLE SIZE DISTRIBUTION CURVE FOR THE TYRE CHIPS 34
FIGURE 3. 7 EXAMPLES OF EXPLOSIVE CHARGE USED IN THIS STUDY 34
FIGURE 3. 8 CHECKING FOR THE CONTINUITY OF THE CHARGE BEFORE BEING EMPLOYED 35
FIGURE 3. 9 FOUNDATION PLAN (A) FLOOR PLAN (FIRST FLOOR FOR ONE-STOREY HOUSE; FIRST AND SECOND FLOORS FOR TWO-STOREY HOUSE) (B) ROOF BEAM PLAN (C) 35
FIGURE 3. 10 ELEVATION DRAWINGS FOR ONE-STOREY HOUSE (A) TWO-STOREY HOUSE (B) 36
FIGURE 3. 11 ACCELEROMETER (A) THE ACCELEROMETER CONNECTED TO THE COAXIAL CABLE 36
FIGURE 3. 12 NI COMPACT DAQ CHASSIS (A) NI MODULE FOR ACQUIRING THE ACCELERATION SIGNALS 37
FIGURE 3. 13 TEST SET-UP AND MEASUREMENT ARRANGEMENT: TOP VIEW (A) SECTIONAL VIEW (B) 39
FIGURE 3. 14 INSTALLATION OF ONE- AND TWO-STOREY HOUSES 40
FIGURE 3. 15 ACCELEROMETERS BEING INSTALLED AND CONNECTED TO THE DATA ACQUISITION SYSTEM 40
FIGURE 4. 1 ACCELERATION SIGNALS FOR D-A0 (DRY CONDITIONS): G1 (A) G2 (B) AND G3 (C) 45
FIGURE 4. 2 ACCELERATION SIGNALS FOR D-A40 (DRY CONDITIONS): G1 (A) G2 (B) AND G3 (C) 46
FIGURE 4. 3 ACCELERATION SIGNALS FOR D-A75 (DRY CONDITIONS): G1 (A) G2 (B) AND G3 (C) 47
FIGURE 4. 4 ACCELERATION SIGNALS FOR D-A90 (DRY CONDITIONS): G1 (A) G2 (B) AND G3 (C) 48
FIGURE 4. 5 ACCELERATION SIGNALS FOR D-A95 (DRY CONDITIONS): G1 (A) G2 (B) AND G3 (C) 49
FIGURE 4. 6 ACCELERATION SIGNALS FOR D-A100 (DRY CONDITIONS): G1 (A) G2 (B) AND G3 (C) 50
FIGURE 4. 7 ACCELERATION SIGNALS FOR W-A0 (WET CONDITIONS): G1 (A) G2 (B) AND G3 (C) 51
FIGURE 4. 8 ACCELERATION SIGNALS FOR W-A40 (WET CONDITIONS): G1 (A) G2 (B) AND G3 (C) 52
FIGURE 4. 9 ACCELERATION SIGNALS FOR W-A75 (WET CONDITIONS): G1 (A) G2 (B) AND G3 (C) 53
FIGURE 4. 10 ACCELERATION SIGNALS FOR W-A90 (WET CONDITIONS): G1 (A) G2 (B) AND G3 (C) 54
FIGURE 4. 11 ACCELERATION SIGNALS FOR W-A95 (WET CONDITIONS): G1 (A) G2 (B) AND G3 (C) 55
FIGURE 4. 12 ACCELERATION SIGNALS FOR W-A100 (WET CONDITIONS): G1 (A) G2 (B) AND G3 (C) 56
FIGURE 4. 13 MAXIMUM MEASURED ACCELERATIONS VERSUS PERCENTAGE TYRE CHIPS FOR THE DRY CONDITIONS 57
FIGURE 4. 14 MAXIMUM MEASURED ACCELERATIONS VERSUS PERCENTAGE TYRE CHIPS FOR THE WET CONDITIONS 57
FIGURE 4. 15 PERCENTAGE DIFFERENCES OF MAX. ACCELERATIONS OF G2 AND G3 WITH RESPECT TO G1 58