สารบัญ

กิจกรรมประกาศ ..ก
บทคัดย่อ (ภาษาไทย) ...ค
บทคัดย่อ (ภาษาอังกฤษ) ...ง
คำนำ ...จ
สารบัญ ...ฉ
สารบัญรูป ...ช
สารบัญตาราง ..ซ
บทที่

1 บทนำ ..1
 1.1 ความสำคัญของข้อมูล ...1
 1.2 วัตถุประสงค์การวิจัย ...1
 1.3 ขอบเขตของงานวิจัย ...1
 1.4 กรอบแนวความคิดของโครงการวิจัย2
 1.5 วิธีดำเนินการวิจัย และสถานที่ที่ทำการทดลอง/เก็บข้อมูล2
 1.6 วิธีการดำเนินการวิจัย ..3
 1.7 ระยะเวลาทำการวิจัย และแผนการดำเนินงานทดลองโครงการวิจัย3
 1.8 ประโยชน์ที่ได้รับของโครงการวิจัย4

2 งานวิจัยที่เกี่ยวข้อง ..5
 2.1 บทนํามา ...5
 2.2 ระบบสายน้ำก๊าซแก๊สโดยทั่วไป6
 2.3 ผลกระทบของก๊าซก๊าซกับระบบสายน้ำก๊าซ11
 2.4 การจัดรูปลำต้นที่ดินกัดกั้น13
 2.5 การใช้งานโปรแกรม GUI ในโปรแกรม MATLAB35
 2.6 งานวิจัยที่เกี่ยวข้อง35

บทที่

3 วิธีการดำเนินการวิจัย ..45
 3.1 บทนํามา ...45
สารบัญ (ต่อ)

หน้า
3.2 การออกแบบโปรแกรม.. 45
3.3 ส่วนแสดงหน้าหลัก... 47
3.4 ส่วนของหน้าผู้อื่น... 49
3.5 ส่วนการออกแบบระบบสาขาอากาศแห่ง.. 51
3.5 ส่วนการออกแบบระบบสาขาอากาศแห่ง.. 51
3.6 การสร้างแบบสอบถามสำหรับการประเมิน... 58

4 ผลการเข้าด้วยโปรแกรม... 61
4.1 บทนำ.. 61
4.2 ผลการเข้าด้วยโปรแกรม... 61
4.3 ผลการประเมินโปรแกรมโดยผู้เชี่ยวชาญ... 77

5 สรุปผลการวิจัย... 80
5.1 สรุปผล... 80
5.2 ข้อเสนอแนะในงานวิจัย... 80

รายการอ้างอิง... 82
สารบัญรูป

หน้า

รูปที่ 2.1 โครงสร้างของระบบสายอากาศแห่ง...6
รูปที่ 2.2 โครงสร้างพื้นฐานของระบบสายอากาศแบบสวิทช์ลำเลียง..7
รูปที่ 2.3 โครงสร้างของวงจรรับส่งกรที่เรียกโดยแบ่งคลื่นแบบ Butler Matrix..8
รูปที่ 2.4 แบบรูปการแต่งสัญญาณของราง 4 ลำเลียง ซึ่งสัมพันธ์กับตำแหน่งตามที่ 2.1...9
รูปที่ 2.5 โครงสร้างของสายอากาศแบบปรากฏ...11
รูปที่ 2.6 แบบรูปการแต่งสัญญาณของระบบสายอากาศที่ใช้งานความถี่แบบแพร่แบบที่ 10 MHz ..12
รูปที่ 2.7 แบบรูปการแต่งสัญญาณของระบบสายอากาศที่ใช้งานที่แบบแพร่แบบที่ 500 MHz.................................12
รูปที่ 2.8 แบบรูปการแต่งสัญญาณของสายอากาศแบบลำเลียงแบบแพร่แบบที่ 6 ต้น ที่ใช้การก่อรูป
ลำเลียงแบบกำลังสองเส้นบ่อยที่สุด เมื่อสัญญาณมีความถี่แพร่แบบที่ 10 MHz..........................14
รูปที่ 2.9 แบบรูปการแต่งสัญญาณของสายอากาศแบบลำเลียงแบบแพร่แบบที่ 6 ต้น ที่ใช้การก่อรูป
รูปลำเลียงแบบกำลังสองเส้นบ่อยที่สุด เมื่อสัญญาณมีความถี่แพร่แบบที่ 500 MHz..........................15
รูปที่ 2.10 โครงสร้างของระบบสายอากาศแห่งที่ใช้งานในแบบความถี่แพร่แบบโคจริยะ
ประมวลสัญญาณเชิงต้นกำเนิดและเวลา...17
รูปที่ 2.11 ความสัมพันธ์ของจำนวนโมเมนต์การที่ (2.14) บนระบบ $\nu^* - n^*$..18
รูปที่ 2.12 ตัวอย่างการคำนวณทิศทางของการก่อรูปลำเลียงและแพร่ที่ใช้งานบนระบบ $\nu^* - n^*$
$\nu^* - n^*$ ซึ่งจะมีค่าเป็น 1 ที่แบบสินบวกจำเพาะ และเป็น 0 ที่ตัวแปรอื่น..............................19
รูปที่ 2.13 ฟังก์ชัน H บนระบบ $\nu^* - n^*$ เมื่อตัวแปรคูณคูณหลักที่มี $\phi_0 = 30$ องศา..21
รูปที่ 2.14 โครงสร้างของระบบสายอากาศแห่งที่ใช้งานในแบบความถี่แพร่แบบโคจริยะการประมวล
สัญญาณเชิงต้นกำเนิดและความถี่...22
รูปที่ 2.15 โครงสร้างของระบบสายอากาศแห่งที่ใช้งานในแบบความถี่แพร่โดยใช้โคจริยะการประมวล
รูปที่ 2.15 ผลสัญญาณเชิงต้นกำเนิดเพียงตัวการเดียว..23
รูปที่ 2.16 โครงสร้างของระบบสายอากาศแห่งที่ใช้งานบนระบบที่การก่อรูปลำเลียงแบบแพร่โคจริยะ
ประมวลผลสัญญาณเชิงต้นกำเนิดเพียงตัวเดียว...21
รูปที่ 2.17 ความสัมพันธ์ของผลในสมการที่ (2.29) บนระบบ $\nu - \nu_0$..26
รูปที่ 2.18 ตัวอย่างการคำนวณทิศทางของการก่อรูปลำเลียงตัวย่อยการประมวลผลสัญญาณเชิงต้นกำเนิด
เพียงตัวเดียว..27
รูปที่ 2.19 ฟังก์ชัน H บนระบบ $\nu - \nu_0$ ที่การพุ่งคูณหลักที่มี $\phi_0 = 30$ องศา..28
สารบัญสรุป (ต่อ)

หน้า

รูปที่ 2.20 แบบสรุปการแปลงผังที่ความถี่ 2.2 GHz เมื่อที่ศูนย์พุลิสต์หลักขั้นที่มุม $\varphi_0 = 30$ องศา ... 30

รูปที่ 2.21 แบบสรุปการแปลงผังที่ความถี่ 1.9 ถึง 2.5 GHz เมื่อที่ศูนย์พุลิสต์หลักขั้นที่มุม 30 องศา ... 30

รูปที่ 2.22 แบบสรุปการแปลงผังของสถานอากาศขนาด 20 x 20 ที่ความถี่ 1.9 ถึง 2.5 GHz เมื่อที่ศูนย์พุลิสต์หลักขั้นที่มุม 30 องศา ... 31

รูปที่ 2.23 แบบสรุปการแปลงผังของสถานอากาศขนาด 50 x 50 ที่ความถี่ 1.9 ถึง 2.5 GHz เมื่อที่ศูนย์พุลิสต์หลักขั้นที่มุม 30 องศา ... 31

รูปที่ 2.24 แบบสรุปการแปลงผังเมื่อใช้ฟังก์ชันเช็ปเพทที่ความถี่ 2.2 GHz เมื่อที่ศูนย์พุลิสต์หลักขั้นที่มุม 30 องศา ... 34

รูปที่ 2.25 แบบสรุปการแปลงผังเมื่อใช้ฟังก์ชันเช็ปเพทที่ความถี่ 1.9 ถึง 2.5 GHz เมื่อที่ศูนย์พุลิสต์หลักขั้นที่มุม 30 องศา ... 34

รูปที่ 2.26 เบื้องหน้าต่าง GUIDE ... 35

รูปที่ 2.27 หน้าต่าง GUIDE Quick Start ... 36

รูปที่ 2.28 หน้าต่างเริ่มต้นการสร้าง GUI ... 36

รูปที่ 2.29 ตัวอย่างเครื่องมือในการสร้าง GUI ... 37

รูปที่ 2.30 หน้าต่างบันทึกของโปรแกรม ... 38

รูปที่ 2.31 ตัวอย่างหน้าต่างที่ได้จากการรันโปรแกรม ... 39

รูปที่ 2.32 หน้าต่างเปลี่ยนแปลงค่าความสมบัติของวัสดุดี ... 40

รูปที่ 2.33 หน้าต่างเปลี่ยนแปลงค่าความสมบัติของวัสดุดี ... 41

รูปที่ 2.34 หน้าต่างแก้ไขค่าตัวเลือกของโปรแกรม ... 42

รูปที่ 3.1 โดยรวมการท่าทางของของพื้นที่การจัดการพื้นที่สุทธิการออกแบบระบบอาคารอากาศแห่ง… 46

รูปที่ 3.2 การออกแบบหน้าต่างหลักด้วย GUI ของ MATLAB ... 48

รูปที่ 3.2 หน้าหลักของการออกแบบระบบอาคารอากาศแห่ง… ... 48

รูปที่ 3.4 รูปหน้าดูมือสำคัญสู่การใช้งาน ... 49

รูปที่ 3.5 หน้าหลักของการใช้งานโปรแกรม ... 49
สารบัญ (ต่อ)

หน้า

รูปที่ 3.6 ไฟล์ในรูปแบบ .pdf ซึ่ง (g) ไฟล์ดูมีการใช้งานโปรแกรม (g) ไฟล์ของมูลเหตุนิยิตย์ระบบสายอากาศรก.......................... 50

รูปที่ 3.7 การออกแบบหน้าต่างการเลือกโปรแกรมการออกแบบ.. 51

รูปที่ 3.8 หน้าต่างการเลือกโปรแกรมการออกแบบ... 51

รูปที่ 3.9 หน้าการออกแบบระบบสายอากาศแบบสวิทช์สับสี่แบบบัตเตอร์เมทริกซ์... 52

รูปที่ 3.10 หน้าต่างระบบสายอากาศแบบสวิทช์สเก็ตต์แบบบัตเตอร์เมทริกซ์............................. 53

รูปที่ 3.11 หน้าต่างการออกแบบระบบสายอากาศแทนที่เลือกออกแบบตามจำนวนสี่สับสี่หลัก...... 54

รูปที่ 3.12 หน้าต่างระบบสายอากาศแทนที่เลือกออกแบบตามจำนวนสี่สับสี่หลัก.......................... 54

รูปที่ 3.13 หน้าต่างการออกแบบระบบสายอากาศแทนที่ใช้งานในแกนความถี่กรรณ์แบบมี 1 ส่ำสี่สับสี่หลัก.. 55

รูปที่ 3.14 หน้าต่างของการออกแบบสายอากาศแทนที่ใช้งานในแกนความถี่กรรณ์แบบมี 1 ส่ำสี่สับสี่หลัก............. 56

รูปที่ 3.15 หน้าต่างการออกแบบของระบบสายอากาศแทนที่ใช้งานในแกนความถี่กรรณ์แบบมีสี่สับสี่หลัก 2 ส่ำสี่สับสี่หลัก.. 56

รูปที่ 3.16 หน้าต่างของการออกแบบสายอากาศแทนที่ใช้งานในแกนความถี่กรรณ์แบบมี 2 ส่ำสี่สับสี่หลัก............. 57

รูปที่ 4.1 โดยรอบของโปรแกรมการออกแบบระบบสายอากาศแทนที่ใช้งานในแกนความถี่กรรณ์.. 61

รูปที่ 4.2 หน้าต่างของโปรแกรมการออกแบบระบบสายอากาศแบบสวิทช์สี่แบบบัตเตอร์เมทริกซ์ ที่มีความยาวคลื่น 0.5λ.. 62

รูปที่ 4.3 หน้าต่างของโปรแกรมการออกแบบระบบสายอากาศแบบสวิทช์สี่แบบบัตเตอร์เมทริกซ์ ที่มีความยาวคลื่น 0.25λ.. 62

รูปที่ 4.4 หน้าต่างของโปรแกรมการออกแบบสายอากาศแทนที่ใช้งานที่ความถี่ 1.9 GHz ความยาวคลื่นเป็น 0.25λ เลือกพื้นที่ 30 องศา และใช้บริเวณด้านปลาย 80 องศา... 63

รูปที่ 4.5 หน้าต่างของโปรแกรมการออกแบบสายอากาศแทนที่ใช้งานที่ความถี่ 1.9 GHz ความยาวคลื่นเป็น 0.5λ ไม่มีการเลือกพื้นที่และใช้บริเวณด้านปลาย 90 องศา... 64

รูปที่ 4.6 แบบรูปภาพแสดงทางที่ได้ เมื่อคลิกปุ่ม U plane โดยเลือกพิกัดซึ่ง Since Function ที่ส่ำสี่สับสี่หลักที่มีมุม 30 องศา... 65

รูปที่ 4.7 แบบรูปภาพแสดงทางที่ได้ เมื่อคลิกปุ่ม Center Freq. โดยเลือกใช้พิกัดซึ่ง Since Function ที่ส่ำสี่สับสี่หลักที่มีมุม 30 องศา... 65
สารบัญ (ต่อ)

หน้า 66
รูปที่ 4.8 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม All Freq. โดยเลือกใช้ฟังก์ชัน Sinc Function ที่สำคัญที่มุม 30 องศา
รูปที่ 4.9 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม All Freq. โดยเลือกใช้ฟังก์ชัน Sinc Function ที่สำคัญที่มุม 45 องศา
รูปที่ 4.10 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม All Freq. โดยเลือกใช้ฟังก์ชัน Sinc Function ที่สำคัญที่มุม 45 องศา โดยที่ซอร์ของขนาด 6x6 ต้น
รูปที่ 4.11 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม U Plane โดยเลือกใช้ฟังก์ชัน Chebyshev Function
รูปที่ 4.12 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม Center freq. โดยเลือกใช้ฟังก์ชัน Chebyshev Function
รูปที่ 4.13 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม All freq. โดยเลือกใช้ฟังก์ชัน Chebyshev Function
รูปที่ 4.14 หน้าต่างการออกแบบระบบสายอากาศแบบขนาด 8x8 เมื่อเลือกใช้ฟังก์ชันแซนเซิฟ
รูปที่ 4.15 หน้าต่างการออกแบบระบบสายอากาศแบบขนาด 8x8 ต้น เมื่อเลือกใช้ฟังก์ชันแซนเซิฟ
รูปที่ 4.16 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม U plane โดยเลือกใช้ฟังก์ชัน Sinc Function จำนวนสายอากาศ 4x4 ต้น และที่มีพิเศษของลำต้นหลักที่ 30 องศา และ -30 องศา
รูปที่ 4.17 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม Center freq. โดยเลือกใช้ฟังก์ชัน Sinc Function จำนวนสายอากาศ 4x4 ต้น และที่มีพิเศษของลำต้นหลักที่ 30 องศา และ -30 องศา
รูปที่ 4.18 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม All freq. โดยเลือกใช้ฟังก์ชัน Sinc Function จำนวนสายอากาศ 4x4 ต้น และที่มีพิเศษของลำต้นหลักที่ 30 องศา และ -30 องศา
รูปที่ 4.19 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม All freq. โดยเลือกใช้ฟังก์ชัน Sinc Function จำนวนสายอากาศ 4x4 ต้น และที่มีพิเศษของลำต้นหลักที่ 30 องศา และ -65 องศา
รูปที่ 4.20 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม All freq. โดยเลือกใช้ฟังก์ชัน Sinc Function จำนวนสายอากาศ 8x8 ต้น และที่มีพิเศษของลำต้นหลักที่ 30 องศา และ -30 องศา
รูปที่ 4.21 แบบรูปการแฝงสิ่งงานที่ได้เมื่อกดปุ่ม All freq. โดยเลือกใช้ฟังก์ชัน Chebyshev Function องศาจำนวนสายอากาศ 8x8 ต้น และที่มีพิเศษของลำต้นหลักที่ 30 องศา -30 องศา
สารบัญรูป (ต่อ)

หน้า

รูปที่ 4.22 แบบรูปการแผ่ลักษณะที่ได้เมื่อกดปุ่ม All freq โดยเลือกใช้ฟังก์ชัน Chebyshev Function ของจำนวนสายยาว 4x4 ต้น และมีที่ตั้งของล่าสุดหลักที่ 30 องศา -30 องศา .. 75

รูปที่ 4.23 แบบรูปการแผ่ลักษณะของสัญญาณ 3 ความถี่ โดยเลือกใช้ฟังก์ชัน Chebyshev Function ของจำนวนสายยาว 8x8 ต้น และมีที่ตั้งของล่าสุดหลักที่ 30 องศา -30 องศา .. 76

รูปที่ 4.24 แบบรูปการแผ่ลักษณะของสัญญาณ 7 ความถี่ โดยเลือกใช้ฟังก์ชัน Chebyshev Function ของจำนวนสายยาว 8x8 ต้น และมีที่ตั้งของล่าสุดหลักที่ 30 องศา -30 องศา .. 76

รูปที่ 4.25 แบบรูปการแผ่ลักษณะของสัญญาณ 7 ความถี่ โดยเลือกใช้ฟังก์ชัน Chebyshev Function ของจำนวนสายยาว 6x6 ต้น และมีที่ตั้งของล่าสุดหลักที่ 30 องศา -65 องศา .. 77
สารบัญตาราง

หน้า

ตารางที่ 2.1 ทิศทางของพุ่คชีนหลัก ความต่างเพศ และเพศของสัญญาณจากสำรับวงจรช่วยแบบ Butler Matrix .. 7
ตารางที่ 2.2 คำสั่งประสิทธิ์การส่งน้ำหนักของระบบก่อรูปบล็อกหน้าตัด 4x4 ... 29
ตารางที่ 3.1 ระดับบนที่การให้คะแนนและการแปลความหมาย ... 58
ตารางที่ 3.2 รายการประเมินด้านโครงสร้าง .. 59
ตารางที่ 3.3 รายการประเมินด้านโครงสร้างใช้งาน .. 59
ตารางที่ 4.1 คำสั่งประสิทธิ์การส่งน้ำหนักของสายอากาศแตะระดับเมื่อถือ Chebyshev Function ... 69
ตารางที่ 4.2 ระดับคะแนนเฉลี่ยของการประเมินด้านโครงสร้าง ... 78
ตารางที่ 4.3 ระดับคะแนนเฉลี่ยของการประเมินด้านการใช้งาน ... 79