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THE DUALITY OF A GENERALIZED BERGMAN SPACE

Marisa Senmoh!

Abstract

A Bergman space HLz(]B, dug) is the space consisting of all holomorphic
functions on the unit ball B which are square- integrable with respect to dv, where
dvg = ca(1 — |2]?)*. The space is non-zero when a > —1. However, these spaces
can be extended to the case —2 < a < —1 by defining a generalized Bergman
space

HIX(B, o) = { f € HIA(B, duess) z% € HLA(B, dva+2)}
which HL?*(B, a) = HL*(B, dv,) when o > —1 and H L*(B, ) is non-zero
when —2 < a < —1.By [Chailuek,K and Hall, B], the authers proved some prop-
erties of a generalized Bergman space and including the duality of a generalized
Bergman space for o, 8 > —2

In this reserch, we are interested in the duality of a generalized Bergman

space for all o, 3.
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CHAPTER 1

Introduction

d
Z |2i|2 < 1 ) be the open unit

i=1

Let B = { 2 = (21, 2, ... 25) € C%: 2]l =

ball in C*. We define the measure
dpy = cx(1 — |z[})* @+ gz

where c), is the normalization factor defined by ¢y = Wd_I};E\)\)T(iS, A > d. Denote by
HL?*(B?, p), the weighted Bergman space consisting of all holomorphic functions
on B? that are square-integrable with respect to the measure ;. These spaces are
Hilbert spaces.

The condition A > d is due to the fact that the measure iy is finite if and
only if A > d. When the measure is finite, all bounded holomorphic functions are
square-integrable and, more importantly, the constant c; makes the measure is a
probability measure. However, when the measure is infinite, there are no nonzero
holomorphic functions that are square-integrable with respect to .

For A > d and by the Riesz representation, any function f € HL?(B4, uy) can

be represented as
1) = [ Kn(ey0) ) dis(w)
B<

where K (z,w) = m is called the reproducing kernel for this space.

Consider the formula for the reproducing kernel K (w, z) = m It is pos-
itive definite for all A > 0, not only A > d. This is an evidence to support that
the space HL?(BY, 11,) can be extended to A > 0 as “reproducing kernel Hilbert
spaces” .

According to Theorem 4 in [Chailuek,K and Hall,B], we can define a holomor-

phic Sobolev space (or Besov space) as follows. Let n = [g-l , for all A > 0,



define
H(B%A) ={f:B* - C|Nfe HL* (B, pasan), 0 < k < n}

where N denote the number operator

i
N=;Zia_zz..

Then (f, g)r = (Af, Bg)HLz(BdMHn) where

N N N
A= Q*xm)@*xzﬁﬁ)“0+x:ﬁ?ﬁ

N N N
B—'Q+T)@+xn)“0+rzﬁﬁ)

defines an inner product on H (B4, )) and , with respect to this inner product,
H(B?,\) is a complete space whose reproducing kernel is also given by Ky (z,w) =
m. Moreover, H (B )) is identical to HL?(B?, 4,) when A > d,

By the definition of a generalized Bergman space. In this research, we will
show that the duality of a generalized Bergman space can be proved by direct

computation and boundedness of coefficients.



CHAPTER 2

Preliminaries

In this chapter, we first collect some basic knowledge and the notations of

operators used in this research.

Definition 1. Let X be a vector space over a field F. A function |- || : X~ [0, 00)

is said to be a norm on X if
(i) |lz|| =0 if and only if z = 0
(ii) |lez|| = |c|||z|| for any z € X and c € F
(iii) lz + y|l < llzll + [ly|| for any z,y € X.

A vector space equipped with a norm is called a normed linear space, or

simply a normed space. Property (iii) is referred to as the triangle inequality.

Definition 2. The metric space (X, d) is said to be complete if every Cauchy
sequence in X converges (that is has a limit which is an element of X). That is if

d(Tn, Zm) — 0 as m,n — oo then {z, } must converge also in X.

Definition 3. A Banach Space is a normed linear space which is complete in

the metric defined by its norm. That is d(z,y) = ||z — y][.

Definition 4. An inner product on a vector space V is a function that associates
a complex number (u,v) with each pair of vector w and v in V in such a way that

the following axioms are satisfied for all vectors u, v and w in V and all scalars k.
©)  (u,v) = (v, u)
(i) (u+v,w) = (v, w) + (v,w)
(i) (ku,v) = k(u,v)

(iv) (v,v) >0 and (v,v) = 0 if and only if v = 0.
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A vector space equipped with an inner product is called an inner product space.

So if we define [|v]| = 1/(v,v) then || - || is & norm on V.

Definition 5. For 1 > p < oco,the £? (X, p)-space is the collection of all functions
f X — C such that

[ 17@Irduz) < o
X

We define LP(X, ) to be the space of all equivalence classes of functions in
LP(X, u) under the relation fg if and only if [ = g almost everywhere with respect

to the measure

Definition 6. A Hilbert space is an inner product space which is complete with

respect to the norm given by the inner product.

Theorem 1. (Riesz Representation) If L is a bounded linear functional on a

Hilbert space H, then there exists a unique y € H such that
L(z) = (z,y) for each z € H

Moreover || L|| = ||y||.

Theorem 2. (Holder inequality) If p > 1 and % - % =1, then

Xn: a,-bi

11

< Qe (3 1)

i=1
Definition 7. Let X be a norm linear space. Denote by X* the set of all bounded

linear functional on X. We call X* the dual space of X

Theorem 3. (Duality of Bergman spaces) A Bergman space can be repre-
sented by the dual of another Bergman space by the following theorem. (See Zhu,K
Theorem 2.12) For o, B > d,

HLz(]Bd) /Loz)* = HLz(Bd’ )uﬂ)



under the inner product

(f, D nre@ep,) = /Bd F(2)9(z) dp (2),

for £ € HLA (B, o), g € HL*(B, ) and y = 2L,

Duality of generalized Bergman spaces. It should be noted that a Bergman
space HL*(B% py) is a closed subspace of the space L%(B? u,). However, by its
definition, H (B, )) is not defined as a subspace of any L? space. Therefore the
proof of the duality of Bergman spaces cannot be adopted to H (B4, \). However,
the duality of generalized Bergman space can be proved by direct computation

and boundedness of coefficients.



CHAPTER 3

Main Results

Theorem 4. For a,8 > 0
H(B% a)* = H(B?, B)
under the inner product

(9= [ AF GBI ditrn(2),

a+p
o

for f € HB% a), g € H(B?,B) and v =

Proof. For each g € H(B ), we define Ty: H(B% a) — C by

Tg(f) S (f, g)v'

Next, we will prove that T, € H(B%, a)*. Consider
ITo(H)l = [f,9)4]
= |<Af, BQ)HL2(Bd,M+z,.)|

= Cy+42n

/Bd Af(2)Bg(z)(1 = |2))72" (1 — |2]?)~ g,

< ervan [ (1= o) PUATEIE= o) TR (1 - o) e



By Holder’s inequality,

1
2

AN < epsnn ([ (A= 120 P 1ATG @ - o))

([ (= 12BN (1 — [2f) = Ve %
(4 )

1

= Cy+2n </le |[Af(2))2(1 = |2)?)*+*(1 — IZIZ)“(dH)dz) 1
. (/Bd BT (1 - |2[2)B+2n(1 — Izlz)_(dﬂ)dz)%

= c’y+2n“Af(z)“’HL2(1Bd,pa+g,.)“Bg(z)”'HLz(Bd,uﬂ+2ﬂ)

= Cyi2n(Af(2), Af(2))at2n(BY(2), B9(2)) p12n-

By considering the coefficients in the operators A and B, there exist constants
Ca(n, ) and Cp(n, B) such that (Af(2), Af(2))at2n < Ca(n,@){f(2), f(2))as2n
and (Bg(z), Bg(2))p+2n < C(n, @)(9(2), 9(2))p2n-
Therefore, |Ty(f)| < C|lgllp+2nll flla-+2n Where the constant C' is independent of f.
Conversely, let F' € H(B?, «)*. By Riesz representation, there exists a function
h € H(B?, ) such that F(f) = (f, h) for all f € H(B? a). To prove H(B?, a)* =
H(B% B), we need a function g € H(B% B), instead of h € H(B% «), such that
F(f) = (f, 9),. However, by manipulating the coefficients, we obtain that function
g.
Consider, for f € H(B¢, ),

F(f) = (f,h)a = Cefe Bh)HLz(le,pa+2n)'
Now the operator A and B can be distributed as

A=ZRkN’°+IandB=ZSkN’°+I.
k=1 k=1



Therefore,

F(f) = <Af7 Bh)’HLz(IBd,,ua.},gn)

= <Z ReN*f+ £, SiN*h + h>
k=1 HLZ(Bdr#a+2n)
- <Z RyN*f, ZS N’°h> + <Z Ry N*f, h>
k=1 k=1 HL? (Bd,#a+2n) k=1 HLz(Bd1/‘0+2ﬂ)
! < Z Ska > 0 <f’ h>HL2(Bd:#a+2n)
HL2(Bda#u+2n)
= <Z RiN* f,ZS N’°Mh> <Z RNk, Mh>
k= k=1 HLZ(Bd,/l-y-f-Zn) k=1 HLz(del""‘r+2n)
+ < ZSkaMh,> + <f, Mh)'HL2(]Bd,u-.,+2n)
’HLz(Bd#"ﬁ%)

<i ReNkf + f, ZSkN’“Mh + Mh

k=1 k=1 > HL2(B4,py2n)
= (Af’ MBh)wﬂ(le

,,U-'y+2n,) Y

a

where M is a positive constant depend on a,~. Let g = Mh then we also have
g € HB% a) C HBY ) if B > a. Therefore there exists g € H(B¢, B) such that
F(f) = (A, Bo) 2wty ony = (o8 for all £ € H(BZ, ).

The condition f > « restricts us to say that this theorem is valid only for f >
a > 0. However for o > § from above we get H(B% 8)* C H(B% ) and since
H is reflexive Banach spaces therefore H (B¢, a)* C H(B?, 8)** = H (B¢, B) which

make the theorem to be valid for all o, 8 > 0.
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