บทที่ 4
ผลการดำเนินงานและการวิเคราะห์

4.1 กล่าวคำ

แผ่นดินไหวเป็นปรากฏการณ์ที่เกิดขึ้นตามธรรมชาติ ที่มีสาเหตุมาจากการปลดปล่อยพลังงานจากความเครียดที่เก็บอยู่ในหินได้พื้นผิวโลกอย่างหนักถึงหนักใด โดยมีสาเหตุจากมีการเคลื่อนไหวของเปลือกโลก โดยแผ่นดินไหวเกิดขึ้นที่พื้นที่ปล่อยโดยความรุนแรงของการสันและเพื่อนของแผ่นดินไหว มีตั้งแต่ที่มีน้อยไปถึงสุดจนถึงขั้นที่เกิดความเสียหายพังทลายของสิ่งก่อสร้างต่างๆ เช่น อาคาร บ้านเรือน ถนนทาง เขื่อน ต่อต่อจนถึงทรัพย์สิน ซึ่งในปัจจุบันการเกิดแผ่นดินไหวมีความรุนแรงเพิ่มสูงขึ้น และมีการเกิดในประเทศไทย บ่อยครั้งและมีปริมาณความรุนแรงสูงขึ้น ดังนั้นการศึกษาการเกิดแผ่นดินไหวจึงมีความสำคัญ

(ก) รูปที่ 1 เครื่องจักรผลิตแผ่นดินไหว แบบ 1 ที่นำเสนอ

(ข) เครื่องจักรแบบ

(ค) การติดตั้งตัวตรวจจับการสันและเพื่อน อาคารบ้านเรือน

ในทั้งชั้นได้นำเครื่องจักรผลิตแผ่นดินไหว แบบ 1 ที่ได้ถูกออกแบบในบทที่ 3 มาทดสอบการทำงานเพื่อหาประสิทธิภาพได้เป็นไปตามเป้าหมายที่ได้กำหนดไว้ในบทที่ 1 หรือไม่ ต้องตรวจสอบต่อไปนี้

1) เพื่อทดสอบประสิทธิภาพด้านความแตกต่างของที่น้ำหนักผ่านต่างๆ ตั้งแต่ 0 กิโลกรัมถึง 50 กิโลกรัม โดยการทำการทดสอบเพื่อคั่งครั้งละ 10 กิโลกรัม เพื่อนำค่าความแตกต่างมา
ทำการค้นพบหาความร่วงและอัตราการร่วงเพื่อการตรวจที่ในการประเมินความรุนแรงของแผนดินที่บริการจัดลองได้ดังนี้

2) การทดสอบโดยการกำหนดค่าติดต่อคลีสต์ที่ต่างกันเพื่อกำหนดโมเดลของพืชหมู่ในอัตราที่ต่างกัน เพื่อใช้เปรียบเทียบขนาดการเกิดแผนดินที่ขนาดต่างๆ จำนวนไม่น้อยกว่า 4 ค่า

4.2 ผลการทดสอบประสิทธิภาพของเครื่องจักรของการเกิดแผนดินโดย

4.2.1 การทดสอบการจัดจ้างการเกิดแผนดินโดย เมื่อเครื่องจักรของการเกิดแผนดินใหม่

ทำการทดสอบกับโรคพืชขั้นการสั่นสะเทือนแบบยาโพรืมินิส กรัมไม่มีเหตุผล

ในการทดสอบการจัดจ้างการเกิดแผนดินใหม่ ของเครื่องจักรของการเกิดแผนดินใหม่ทำงาน
ในโรคพืชขั้นการสั่นสะเทือนแบบยาโพรืมินิส กรัมไม่มีเหตุผล จะทำการทดสอบโดยการกำหนดระยะ
ทางการเคลื่อนที่ของกลับบ้านหน้าของเครื่องจักรของการเกิดแผนดินใหม่ โดยกำหนดไว้ที่ 225 เซนติเมตร (ค่าวนทุกๆการเคลื่อนที่ไปกลับบ้านหน้าเนื่องเป็นจำนวน 5 เที่ยว) แล้วทำการจับ
เวลาในการเคลื่อนที่ ค่าที่ได้จะบันทึกคุณภาพการค่าความร่วงและค่าอัตราการร่วงตามสัดส่วน โดยในการ
ทดสอบจะทำการทดสอบเป็นจำนวน 5 ครั้ง และโดยแต่ละครั้งจะทำการทดสอบเป็นจำนวน 3 ซ้ำ
เพื่อให้เกิดความเที่ยงตรงระหว่างว่ามีคาค่าเฉลี่ย รายละเอียดแสดงดังตารางที่ 4.1.

ตารางที่ 4.1 ผลการทดสอบการจัดจ้างการเกิดแผนดินใหม่ ด้วยเครื่องจักรของการเกิดแผนดินใหม่

| การทดสอบ ครั้งที่ | น้ำหนักการทดสอบ (กิโลกรัม) | ระยะทาง (เซนติเมตร) | เวลาเฉลี่ย (วินาที) | ความร่วง (เมตร/วินาที) | ค่าอัตรา
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ไม่มีโหลด</td>
<td>225</td>
<td>14.733</td>
<td>1.04</td>
<td>101.58</td>
</tr>
<tr>
<td>2</td>
<td>ไม่มีโหลด</td>
<td>225</td>
<td>15.033</td>
<td>0.99</td>
<td>97.57</td>
</tr>
<tr>
<td>3</td>
<td>ไม่มีโหลด</td>
<td>225</td>
<td>14.933</td>
<td>1.01</td>
<td>98.08</td>
</tr>
<tr>
<td>4</td>
<td>ไม่มีโหลด</td>
<td>225</td>
<td>14.900</td>
<td>1.01</td>
<td>99.32</td>
</tr>
<tr>
<td>5</td>
<td>ไม่มีโหลด</td>
<td>225</td>
<td>15.033</td>
<td>0.99</td>
<td>97.57</td>
</tr>
<tr>
<td>6</td>
<td>ไม่มีโหลด</td>
<td>225</td>
<td>14.933</td>
<td>1.01</td>
<td>98.98</td>
</tr>
</tbody>
</table>

จากรายละเอียดที่ 4.1 ได้เห็นได้ว่าการจัดจ้างแผนดินโดยโรคพืชมั่นกับการสั่นสะเทือนแบบยาโพรืมินิส กรัมไม่มีเหตุผล ที่ระยะ 225 เซนติเมตร พบว่าจะใช้เวลาเฉลี่ยในการเคลื่อนที่ 14.933 วินาทีที่สามารถทำการควบคุมเวลาค่าอัตราการร่วงได้เท่ากับ 98.98 เซนติเมตรต่อวินาที

4.2.2 การทดสอบการจัดจ้างการเกิดแผนดินใหม่ เมื่อเครื่องจักรของการเกิดแผนดินใหม่

ทำการทดสอบขั้นการสั่นสะเทือนแบบยาโพรืมินิส กรัมไม่มีโหลด 10 กิโลกรัม
ในการทดสอบการจำลองการเกิดแผ่นดินไหว ของเครื่องจำลองการเกิดแผ่นดินไหวทำงานในแบบพิเศษด้านการสั่นไหวแบบอาร์มิเนกซ์ กรณีที่ใกล้ 10 กิโลกรัม ดังแสดงในรูปที่ 4.2 โดยจะทำการบรรจุวัสดุหนักดูนละ 1 กิโลกรัม จำนวน 10 ชิ้น วางซ้อนกันบนแผ่นรองรับบนพื้นที่จะทำการทดสอบโดยการกำหนดระยะทางการเคลื่อนที่ของอากาศ์บนพื้นของเครื่องจำลองการเกิดแผ่นดินไหว โดยกำหนดไว้ที่ 225 เซนติเมตร (ค่านวนจากจากการเคลื่อนที่ไปกลับอย่างต่อเนื่องเป็นจำนวน 5 เที่ยว) แล้วทำการจับเวลาในการเคลื่อนที่ ค่าที่ได้จะนำมาค่าวนหาค่าความเร็วและค่าอัตราส่วนตามลำดับ โดยในการทดลองจะทำการทดสอบเป็นจำนวน 5 ครั้ง และโดยแต่ละครั้งจะทำการทดสอบเป็นจำนวน 3 ครั้ง เพื่อให้เกิดความเที่ยวตรงแล้วนำมาหาค่าเฉลี่ย รายละเอียดแสดงดังตารางที่ 4.2

รูปที่ 4.2 การจำลองการเกิดแผ่นดินไหว ทดสอบการทำงานที่น้ำหนัก 10 กิโลกรัม

ตารางที่ 4.2 ผลการทดสอบการจำลองการเกิดแผ่นดินไหว ด้วยเครื่องจำลองการเกิดแผ่นดินไหวทำงานในแบบพิเศษด้านการสั่นไหวแบบอาร์มิเนกซ์ กรณีใกล้ 10 กิโลกรัม

<table>
<thead>
<tr>
<th>การทดสอบครั้งที่</th>
<th>น้ำหนักการทดสอบ (กิโลกรัม)</th>
<th>ระยะทาง (เซนติเมตร)</th>
<th>เวลาเฉลี่ย (วินาที)</th>
<th>ความเร็ว (เมตร/วินาที²)</th>
<th>ค่าอัตราส่วนี่เวร/วินาที</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>225</td>
<td>16.00</td>
<td>0.88</td>
<td>86.13</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>225</td>
<td>15.87</td>
<td>0.89</td>
<td>87.59</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>225</td>
<td>15.63</td>
<td>0.92</td>
<td>90.22</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>225</td>
<td>15.53</td>
<td>0.93</td>
<td>91.39</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>225</td>
<td>15.90</td>
<td>0.89</td>
<td>87.22</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>10</td>
<td>225</td>
<td>15.79</td>
<td>0.90</td>
<td>88.51</td>
</tr>
</tbody>
</table>
จากตารางที่ 4.2 จะเห็นได้ว่าการจ้างลงแผ่นดินไหวโดยอาศัยพื้นฐานชั้นสินทรัพยาภิมณีศึก กรณีมีความ 10 กิโลกรัม ที่ระย้า 225 เซนติเมตร พบว่าจะใช้เวลาเฉลี่ยในการเคลื่อนที่ 15.79 วินาที สามารถทำการค้นหาหาค่าอัตราเร่งได้เท่ากับ 88.51 เซนติเมตรต่อนาที ที่

4.2.3 การทดสอบการจ้างลงการเกิดแผ่นดินไหว เมื่อเครื่องจ้างลงการเกิดแผ่นดินไหว ทำงานในพื้นพื้นฐานชั้นสินทรัพยาภิมณีศึก กรณีมีความ 20 กิโลกรัม

ในการทดสอบการจ้างลงการเกิดแผ่นดินไหว ของเครื่องจ้างลงการเกิดแผ่นดินไหวทำงาน ในพื้นพื้นฐานชั้นสินทรัพยาภิมณีศึก กรณีมีความ 20 กิโลกรัม โดยจะทำการบรรทุกน้ำหนัก ถูกละ 1 กิโลกรัม วางข้างกันในแนวนอนจาน จำนวน 20 ถุง โดยจะทำการทดสอบการทำงานเช่นเดียวกับในตารางที่ 4.2 ผลการทดสอบจะถูกนำมาเปรียบเทียบในตารางที่ 4.3

ตารางที่ 4.3 ผลการทดสอบการจ้างลงการเกิดแผ่นดินไหว ด้วยเครื่องจ้างลงการเกิดแผ่นดินไหว ทำงานในพื้นพื้นฐานชั้นสินทรัพยาภิมณีศึก กรณีมีความ 20 กิโลกรัม

<table>
<thead>
<tr>
<th>การทดสอบ ครั้งที่</th>
<th>น้ำหนักการทดสอบ (กิโลกรัม)</th>
<th>ระยะทาง (เซนติเมตร)</th>
<th>เวลาเฉลี่ย (วินาที)</th>
<th>ความเร่ง (มัด/วินาที^2)</th>
<th>ค่าอัตรา เร่ง/วินาที</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>225</td>
<td>15.77</td>
<td>0.91</td>
<td>89.31</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>225</td>
<td>15.47</td>
<td>0.94</td>
<td>92.18</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>225</td>
<td>15.40</td>
<td>0.95</td>
<td>92.97</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>225</td>
<td>15.63</td>
<td>0.92</td>
<td>90.22</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>225</td>
<td>15.77</td>
<td>0.91</td>
<td>88.71</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>20</td>
<td>225</td>
<td>15.61</td>
<td>0.92</td>
<td>90.68</td>
</tr>
</tbody>
</table>

จากตารางที่ 4.3 จะเห็นได้ว่าการจ้างลงแผ่นดินไหวโดยอาศัยพื้นฐานชั้นสินทรัพยาภิมณีศึก กรณีมีความ 20 กิโลกรัม ที่ระย้า 225 เซนติเมตร พบว่าจะใช้เวลาเฉลี่ยในการเคลื่อนที่ 15.61 วินาที สามารถทำการค้นหาหาค่าอัตราเร่งได้เท่ากับ 90.68 เซนติเมตรต่อนาที ที่

4.2.4 การทดสอบการจ้างลงการเกิดแผ่นดินไหว เมื่อเครื่องจ้างลงการเกิดแผ่นดินไหว ทำงานในพื้นพื้นฐานชั้นสินทรัพยาภิมณีศึก กรณีมีความ 30 กิโลกรัม

ในการทดสอบการจ้างลงการเกิดแผ่นดินไหว ของเครื่องจ้างลงการเกิดแผ่นดินไหวทำงาน ในพื้นพื้นฐานชั้นสินทรัพยาภิมณีศึก กรณีมีความ 30 กิโลกรัม โดยจะทำการบรรทุกน้ำหนัก ถูกละ 1 กิโลกรัม วางข้างกันในแนวนอนจาน จำนวน 30 ถุง โดยจะทำการทดสอบการทำงานเช่นเดียวกับในตารางที่ 4.2 ผลการทดสอบจะถูกนำมาเปรียบเทียบในตารางที่ 4.4

จากตารางที่ 4.4 จะเห็นได้ว่าการจ้างลงแผ่นดินไหวโดยอาศัยพื้นพื้นฐานชั้นสินทรัพยาภิมณีศึก กรณีมีความ 30 กิโลกรัม ที่ระย้า 225 เซนติเมตร พบว่าจะใช้เวลาเฉลี่ยในการเคลื่อนที่ 16.2 วินาที สามารถทำการค้นหาหาค่าอัตราเร่งได้เท่ากับ 93.99 เซนติเมตรต่อนาที ที่
ตารางที่ 4.4 ผลการทดสอบการจาลองการเกิดแผ่นดินไหว ด้วยเครื่องจาลองการเกิดแผ่นดินไหว ทำงานไทยพัฒนาขั้นการสั่นไหวแบบอาหรับมินิกส์ กรณีโหลด 30 กิโลกรัม

<table>
<thead>
<tr>
<th>การทดสอบครั้งที่</th>
<th>น้ำหนักการทดสอบ (กิโลกรัม)</th>
<th>ระยะทาง (เซนติเมตร)</th>
<th>มวลเสียง (วินาที)</th>
<th>ความแข็ง (เมตร/วินาที²)</th>
<th>ค่าอัตราเร่ง/วินาที</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>225</td>
<td>16.43</td>
<td>0.83</td>
<td>84.65</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>225</td>
<td>16.17</td>
<td>0.86</td>
<td>84.37</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>225</td>
<td>15.97</td>
<td>0.82</td>
<td>86.50</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>225</td>
<td>16.03</td>
<td>0.88</td>
<td>85.78</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>225</td>
<td>11.64</td>
<td>0.83</td>
<td>81.65</td>
</tr>
<tr>
<td>คำเฉลี่ย</td>
<td></td>
<td>225</td>
<td>16.21</td>
<td>0.86</td>
<td>83.99</td>
</tr>
</tbody>
</table>

4.2.5 การทดสอบการจาลองการเกิดแผ่นดินไหว เมื่อเครื่องจาลองการเกิดแผ่นดินไหว ทำงานไทยพัฒนาขั้นการสั่นไหวแบบอาหรับมินิกส์ กรณีโหลด 40 กิโลกรัม

ในการทดสอบการจาลองการเกิดแผ่นดินไหว ของเครื่องจาลองการเกิดแผ่นดินไหวทำงานไทยพัฒนาขั้นการสั่นไหวแบบอาหรับมินิกส์ กรณีโหลด 40 กิโลกรัม จะทำการบรรทุกน้ำหนักดุลละ 1 กิโลกรัม วางขึ้นบนบันทึกแรงรับน้ำหนัก จำนวน 40 ดุล โดยจะทำการทดสอบการทำงานเช่นเดียวกับในการทดสอบหัวข้อ 4.2.2 ผลการทดสอบจะถูกนำไปบันทึกลงในตารางที่ 4.5

จากตารางที่ 4.5 จะเห็นได้ว่าการจาลองแผ่นดินไหวไทยพัฒนาขั้นการสั่นไหวแบบอาหรับมินิกส์ กรณีโหลด 40 กิโลกรัม ที่ระยะ 225 เซนติเมตร พบว่าจะมีทิศกลางอยู่ในกรอบต่อเนื่องที่ 16.23 วินาที สามารถทำการด้านบนจากทิศกลางได้เท่ากับ 83.68 เซนติเมตรต่อวินาที

ตารางที่ 4.5 ผลการทดสอบการจาลองการเกิดแผ่นดินไหว ด้วยเครื่องจาลองการเกิดแผ่นดินไหว ทำงานไทยพัฒนาขั้นการสั่นไหวแบบอาหรับมินิกส์ กรณีโหลด 40 กิโลกรัม

<table>
<thead>
<tr>
<th>การทดสอบครั้งที่</th>
<th>น้ำหนักการทดสอบ (กิโลกรัม)</th>
<th>ระยะทาง (เซนติเมตร)</th>
<th>มวลเสียง (วินาที)</th>
<th>ความแข็ง (เมตร/วินาที²)</th>
<th>ค่าอัตราเร่ง/วินาที</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>225</td>
<td>16.33</td>
<td>0.84</td>
<td>82.66</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>225</td>
<td>16.17</td>
<td>0.86</td>
<td>84.37</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>225</td>
<td>16.13</td>
<td>0.86</td>
<td>84.78</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>225</td>
<td>16.33</td>
<td>0.84</td>
<td>82.66</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>225</td>
<td>16.20</td>
<td>0.86</td>
<td>84.02</td>
</tr>
<tr>
<td>คำเฉลี่ย</td>
<td></td>
<td>225</td>
<td>16.23</td>
<td>0.85</td>
<td>83.68</td>
</tr>
</tbody>
</table>
รูปที่ 4.3 การจ้างการออกแบบแผ่นดินไหว ทดสอบการทำงานที่หนัก 50 กิโลกรัม

ตารางที่ 4.6 ผลการทดสอบการออกแบบแผ่นดินไหว ด้วยเครื่องจ้างการออกแบบแผ่นดินไหว ทำงานในโคมไฟฟ้าขั้นการสั่นแบบยางมีนิสก์ อุณหภูมิ 50 กิโลกรัม

การทดสอบ ครั้งที่	น้ำหนักการออกแบบ (กิโลกรัม)	ระยะทาง (เซนติเมตร)	เวลาเยื่อ (วินาที)	ความเร็ว (เมตร/วินาที²)	ค่าอัตรา change 2 เวนิชที่	ค่าอัตราchange 3 เวนิชที่	ค่าอัตราchange 4 เวนิชที่	ค่าอัตราchange 5 เวนิชที่	ค่าอัตราchange ของเปลือกที่	ค่าอัตราchange ของเปลือกที่	ค่าอัตราchange ของเปลือกที่	
1	20	225	16.27	0.85	83.3							
2	20	225	16.43	0.83	81.98							
3	20	225	16.40	0.84	81.98							
4	20	225	16.27	0.85	83.34							
5	20	225	16.27	0.85	83.34							

4.2.6 การทดสอบการออกแบบแผ่นดินไหว เมื่อเครื่องจ้างการออกแบบแผ่นดินไหว ทำงานในโคมไฟฟ้าขั้นการสั่นแบบยางมีนิสก์ อุณหภูมิ 50 กิโลกรัม

ในการทดสอบการออกแบบแผ่นดินไหว ของเครื่องจ้างการออกแบบแผ่นดินไหวทำงานในโคมไฟฟ้าขั้นการสั่นแบบยางมีนิสก์ อุณหภูมิ 50 กิโลกรัม โดยจะทำการบรรทุกน้ำหนัก ดูลง 1 กิโลกรัม วางขึ้นบนบนแท่นรองรับน้ำหนัก จำนวน 50 ดูง ตั้งแต่ผลในรูปที่ 4.3 โดยจะทำ การทดสอบการทำงานเช่นเดียวกันในการทดสอบหัวข้อ 4.2.2 ผลการทดสอบจะถูกนำไปบันทึกผล ในตารางที่ 4.6
จากตารางที่ 4.6 จะเห็นได้ว่า การจำลองผ่านดินในห้องพักฟังค์ชั่นการสัมผัสไสวแบบอาวิณ์นิคส์ การมีพื้นที่ 50 กิโลกรัม ที่ระยะ 225 เซนติเมตร พบว่าจะใช้เวลาเฉลี่ยในการเคลื่อนที่ 16.36 วินาที สามารถทำการ콰่นบนหน้าอยู่ราวได้เท่ากัน 82.73 เซนติเมตรต่อวินาที ซึ่งจะเห็นได้ว่า เมื่อการไหลเส้นศูนย์กลางจำลองผ่านดินในห้องมีค่าอธิบายร่วมที่ลดลง ซึ่งจากผลการทดลองที่ 4.2.1 จนถึงการทดลองที่ 4.2.6 สามารถนำมาเชื่อมการจำลองการกีดกันผ่านดินในห้องที่คำนวณหักต่าง ได้ดังตารางที่ 4.7

ตารางที่ 4.7 ผลการทดลองการจำลองการกีดกันผ่านดินในห้องพักฟังค์ชั่นการสัมผัสไสวแบบอาวิณ์นิคส์ ที่โหลดต่างๆ

<table>
<thead>
<tr>
<th>น้ำหนักการทดสอบ (กิโลกรัม)</th>
<th>ระยะทาง (เซนติเมตร)</th>
<th>เวลาเฉลี่ย (วินาที)</th>
<th>ความเร็ว (เมตร/วินาที²)</th>
<th>ค่าอธิบายร่วม/วินาที</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>225</td>
<td>14.93</td>
<td>1.01</td>
<td>98.98</td>
</tr>
<tr>
<td>10</td>
<td>225</td>
<td>15.79</td>
<td>0.93</td>
<td>88.51</td>
</tr>
<tr>
<td>20</td>
<td>225</td>
<td>15.61</td>
<td>0.91</td>
<td>87.68</td>
</tr>
<tr>
<td>30</td>
<td>225</td>
<td>16.21</td>
<td>0.86</td>
<td>83.91</td>
</tr>
<tr>
<td>40</td>
<td>225</td>
<td>16.23</td>
<td>0.85</td>
<td>83.68</td>
</tr>
<tr>
<td>50</td>
<td>225</td>
<td>16.33</td>
<td>0.84</td>
<td>82.73</td>
</tr>
</tbody>
</table>

รูปที่ 4.4 กราฟความสัมพันธ์ระหว่างค่าอธิบายร่วม/วินาที² (GAL) ต่อการโหลด
จากตารางที่ 4.7 นำมาให้การทดสอบความสัมพันธ์ระหว่างหน้าหักการทดสอบการจั่วล้อการเกิดแผ่นดินไหวกับอัตราเร่งต่อวินาที (GAL) ดังแสดงในรูปที่ 4.4

จากรูปที่ 4.4 จะเห็นได้ว่าความสัมพันธ์ระหว่างหน้าหักที่ทำการทดสอบบนเครื่องจั่วล้อการเกิดแผ่นดินไหวกับอัตราเร่งต่อวินาที ที่เปลี่ยนแปลงไปจากการทำการทดสอบประสิทธิภาพการทำงานของเครื่องจั่วล้อการเกิดแผ่นดินไหว โดยการเปลี่ยนหน้าหักครั้งละ 10 กิโลกรัม แล้วทำการเก็บค่าเฉลี่ยในการเคลื่อนที่แล้วทำการแปลงค่านี้เป็นอัตราเร่งต่อวินาที สามารถสรุปผลการทดลองได้ว่าประสิทธิภาพการทำงานของเครื่องจั่วล้อการเกิดแผ่นดินไหวสามารถทำงานได้ตามขอของเขตที่กำหนดคือสูงสุด 50 กิโลกรัม ที่ไม่มีการโหลดอัตราเร่งต่อวินาที สูงถึง 98 GAL และจะมีค่าลดลงเมื่อปรับมุมการโหลดเพิ่มขึ้น โดยที่กระแสนัดที่ 50 กิโลกรัม จะมีอัตราเร่งต่อวินาทีไม่น้อยกว่า 80 GAL ซึ่งเทียบเท่ากับการเกิดแผ่นดินไหวในระยะประมาณ 5 รอยเตอร์

4.2.7 การทดสอบการควบคุมความเร็วของโมเดลไฟฟ้าโดยเทคนิคหลักสิทธิ์วิทยาศาสตร์
เป็นการทดสอบความเร็วของโมเดลไฟฟ้าเพื่อควบคุมการเคลื่อนที่ของเครื่องจั่วล้อการเกิดแผ่นดินไหว โดยการกำหนดค่าตัวเลขที่ต้องการที่ต่างๆ คือ 0 เบอร์เซ็นต์, 25 เบอร์เซ็นต์, 50 เบอร์เซ็นต์ และ 99 เบอร์เซ็นต์ ตามลำดับ แล้วทำการวัดสัญญาณพลังด้วยดิจิตอลฮีลส์โคป ผลการทดสอบแสดงตั้งในรูปที่ 4.5 และรูปที่ 4.6 ตามลำดับ

จากรูปที่ 4.6 แสดงสัญญาณไฟฟ้าที่ได้จากการวัดสัญญาณด้วยดิจิตอลฮีลส์โคปที่นำไปใช้ในการควบคุมการทำงานของโมเดลไฟฟ้า ให้มีความเร็วที่ต่างๆ ใช้เทคนิคควบคุมด้วยเทคนิคหลักสิทธิ์วิทยาศาสตร์เพื่อให้สามารถถ้าผลที่ได้ทำการควบคุมความเร็วของโมเดลไฟฟ้าเพื่อให้สอดคล้องกับการควบคุมการทำงานของโมเดลไฟฟ้าต่อไป
รูปที่ 4.6 การทดสอบสัญญาณไฟฟ้าโดยใช้เทคนิคหลักสี่เปิดยอดเข็มในเครื่องควบคุมความเร็ว

(ก) ค่าตัวถี่ต่ำเท่ากับ 0 เปอร์เซ็นต์ (ข) ค่าตัวถี่ต่ำเท่ากับ 25 เปอร์เซ็นต์
(ค) ค่าตัวถี่สูงเท่ากับ 50 เปอร์เซ็นต์ (ง) ค่าตัวถี่สูงเท่ากับ 99 เปอร์เซ็นต์

ตารางที่ 4.8 สรุปผลทดสอบค่าความเร็วในการทำงานเมื่อกำลังเคลื่อนที่ตัวถี่ต่ำต่ำต่างๆ

<table>
<thead>
<tr>
<th>แหล่งความเร็ว</th>
<th>เวลา (วินาที)</th>
<th>ความเร็ว (เมตร/วินาที²)</th>
<th>อัตราแรง–วินาที (เซ็นติเมตร/วินาที²)</th>
<th>ค่าตัวถี่ต่ำต่ำต่ำ (เปอร์เซ็นต์)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ข้ามาก</td>
<td>23.53</td>
<td>0.41</td>
<td>39.83</td>
<td>12.5</td>
</tr>
<tr>
<td>ข้า</td>
<td>18.78</td>
<td>0.64</td>
<td>62.52</td>
<td>25</td>
</tr>
<tr>
<td>ปากกลาง</td>
<td>16.22</td>
<td>0.85</td>
<td>83.76</td>
<td>50</td>
</tr>
<tr>
<td>เรือ</td>
<td>14.93</td>
<td>1.01</td>
<td>98.98</td>
<td>99</td>
</tr>
<tr>
<td>เหลื่ย</td>
<td>18.37</td>
<td>0.73</td>
<td>71.27</td>
<td></td>
</tr>
</tbody>
</table>
จากผลที่ได้จากการทดสอบการกำหนดค่าเปอร์เซ็นต์ค่าตัวสิ่งคือค่าต่างๆ ถูกนำมาทดสอบเพื่อหาค่าความเข้าใจในการทำงาน (อัตราเร่ง/วินาที) เพื่อใช้ในการกำหนดสมดุลในการทดสอบของเครื่องจักรกลแก่ติดในระบบ โดยได้ออกแบบใหม่ในการทำงานออกมาได้เป็น 4 ระดับ คือ ข้ามมากข้าม
บานกลาง และเร็ว ตามลำดับ ดังแสดงในรายละเอียดในตารางที่ 4.8

จากตารางที่ 4.8 เป็นการทดสอบโดยการป้อนค่าตัวสิ่งคือค่าต่างๆดังนี้คือ 12.5 เปอร์เซ็นต์ 25 เปอร์เซ็นต์ 50 เปอร์เซ็นต์ และ 100 เปอร์เซ็นต์ ตามลำดับ โดยค่าอัตราเร่งที่ได้ จะพบว่าที่ค่าตัวสิ่งคือค่าต่างๆที่มีค่าน้อยๆ จะมีค่าอัตราเร่งน้อยและเมื่อมีเพิ่มค่าตัวสิ่งคือคือ ค่าอัตราเร่งจะเพิ่มมากขึ้น ที่ค่าตัวสิ่งคือเท่ากับ 12.5 เปอร์เซ็นต์ จะได้ค่าอัตราเร่ง/วินาที คือ 39.83 เซนติเมตรต่อวินาที² ที่ 25 เปอร์เซ็นต์ จะได้ค่าอัตราเร่ง/วินาที คือ 62.52 เซนติเมตรต่อวินาที² ที่ 50 เปอร์เซ็นต์ ค่าอัตราเร่ง/วินาที คือ 83.76 เซนติเมตรต่อวินาที² และที่ 99 เปอร์เซ็นต์ จะได้ค่าอัตราเร่ง/วินาที คือ 98.98 เซนติเมตรต่อวินาที² ตามลำดับ

รูปที่ 4.7 การปรับเปลี่ยนค่าตัวตรวจรูปให้ได้ระดับค่าทดสอบการทำงาน

รูปที่ 4.8 การติดตั้งตัวตรวจรูปขากับตัวฐานของเครื่องจักรกลแก่ติดในระบบ 1 มิติ
4.2.8 การทดสอบการทำงานของตัวตรวจรู้ความร่าง

เป็นการทดสอบการทำงานของตัวตรวจรู้ความร่าง เพื่อตรวจสอบการเกิดแผนที่ในไหว โดยการติดตั้ง ตัวตรวจรู้เข้ากับเครื่องจำลองแผนที่โครงซึ่งจะต้องมีการปรับเพื่อการติดตั้งให้ตัวตรวจรู้มีค่าเป็นศูนย์ โดยจะต้องอยู่ในระดับสูงอย่างมาก รายละเอียดแสดงในรูปที่ 4.7 และรูปที่ 4.8 โดยทำการวัดค่าสัญญาณที่ส่งไปยังไมโครคอนโทรลเลอร์ ดังแสดงในรูปที่ 4.9

(ก) ค่าตัวอธิบายเท่ากับ 37.76 ปอร์ที่ dismiss (ข) ค่าตัวอธิบายเท่ากับ 49.85 ปอร์ที่ dismiss
(ค) ค่าตัวอธิบายเท่ากับ 77.77 ปอร์ที่ dismiss

รูปที่ 4.9 ผลการทดสอบการทำงานของตัวตรวจรู้ความร่าง เบอร์ M13MSC2125 ที่ ค่าตัวอธิบายต่างๆ

จากรูปที่ 4.9 แสดงผลการทดสอบการทำงานของตัวตรวจรู้ความร่าง เบอร์ M13MSC2125 ที่ค่าตัวอธิบายต่างๆ โดยที่ค่าตัวอธิบายเท่ากับ 37.76 ปอร์ที่ dismiss ค่าที่รับได้จากตัวตรวจรู้ความร่าง โดยเมื่อตัวตรวจรู้ความร่างเคลื่อนที่ตามการสั่นไหวของเครื่องจำลองการเกิดแผนที่จะส่งค่าสัญญาณไปยังไมโครคอนโทรลเลอร์ สามารถนับค่าสัญญาณผลิตได้จานวน 377.6 ค่า เมื่อเทียบค่าที่ได้กับการวัดค่าความร่างจะได้ค่าอธิบายเท่ากับ -0.153 เมตร ต่อวินาที ในขณะที่ผลการทดสอบที่ค่าตัวอธิบายมีค่าเท่ากับ 50 ปอร์ที่ dismiss ที่สามารถรับผลได้จากตัวตรวจรู้ได้เนื่องจากตัวตรวจรู้ไม่มีการเคลื่อนที่จึงทำให้ค่าความร่างเป็นศูนย์ และจากรูปที่ 4.9
(ค) ผลการทดลองคัดตัวดีดีเด็ย์ เท่ากับ 77.77 โปรเซ็นต์ ค่าที่รับได้จากตัวตรวจรู้ค่าความเร่งโดยที่ตัวตรวจรู้มีการเคลื่อนที่แล้วมีค่าสัญญาณส่งไปยังโมโครคอนโทรลย์สามารถนำมาค่าสัญญาณได้ 77.7 ค่าน เมื่อทำการทดลองคัดตัวดีดีเด็ย์จะได้ค่าความเร่งเท่ากับ 22.216 เมตรต่อวินาที

4.2.9 การจับอัตราการเกิดแผ่นดินไหวโดยการคำนวณค่าความสัมประสิทธิ์เยื่อที่ได้จากตัวตรวจรู้

ในการทดสอบการจับอัตราการเกิดแผ่นดินไหว 1 มิติ โดยเก็บค่าจากตัวตรวจรู้ การทดสอบจะใช้ตัวตรวจรู้ความเร่ง เบอร์ M13MSC2125 เป็นโมดูลวัดความเร่งปลายในบรรจุตัวตรวจจำจะความเร่งแบบ 2 ก้าน ในกรณีการทดสอบตัวตรวจรู้จะนำค่าที่ได้มาเก็บไว้ในฐานข้อมูลของโปรแกรมวิชวลเบลีก ซึ่งจะทำการแทนคอมพิวเตอร์ ค่าที่เก็บไว้จะเป็นค่าแรงจี (1 รูมมีค่าเท่ากับ 980 เกอ) ค่าแสดงในรูปที่ 4.10 โดยคำว่า “ปล่อยนำมากูย์กับ 980 เพื่อได้เป็นค่าอัตราแรง ตัวแสดงในสมการที่ 4.1 คำว่าต่ำจะถูกนำมาใช้เป็นค่าปรับการเกิดการสาเหตุแผ่นดินไหวในผลแสดงในรูปที่ 4.11 ตั้งแต่การทดสอบการเกิดแผ่นดินไหว ที่ไม่มีการบรรทุกหนักนักดีมีการบรรทุกหนักนัก 50 กิโลกรัมค่าที่ได้บันทึกในตารางที่ 4.9

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>ค่าแรงจี X กระแส</th>
<th>ตัวตรวจรู้ความเร่ง</th>
<th>นักดีมีการบรรทุกหนักนัก 50 กิโลกรัม</th>
<th>ค่าที่ได้บันทึกในตารางที่ 4.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.34</td>
<td>0.81แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.34</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.34</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.34</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.34</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.34</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.37</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.37</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.37</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>0.41</td>
<td>0.89แกลลอนต่อหนึ่งเด็ย์</td>
<td>10</td>
</tr>
</tbody>
</table>

รูปที่ 4.10 ค่าความเร่งที่ได้จากตัวตรวจรู้ที่ถูกเก็บไว้ในฐานข้อมูลบนคอมพิวเตอร์ของโปรแกรมวิชวลเบลีก

\[A = G \times 980 \]

(4.3)

เมื่อ \(A \) คือ ค่าอัตราแรง (m/s²)

\(G \) คือ ค่าความสัมประสิทธิ์ที่ตัวตรวจรู้อ่านค่าได้ (m/s²)

เมื่อปรุงวิธีการคำนวณที่ได้จากการอ่านค่าของตัวตรวจรู้เป็นหน่วย เกล ซึ่งเป็นสัดส่วนของอัตราเร่งหรือแรงเร่งที่สูงของโลก (% ของค่า \(G \)) โดยที่ 1 G จะมีค่าประมาณ 980 เกอ.
ตารางที่ 4.9 ผลการทดสอบการจำลองการเกิดแผ่นดินไหว 1 มิติ ค่าที่ได้จากตัวตรวจรู้

<table>
<thead>
<tr>
<th>น้ำหนัก (กิโลกรัม)</th>
<th>ค่าอัตราเร่ง (เมตร/วินาที²)</th>
<th>การประมาณค่าความสัมพันธ์เพื่อเห็นแผ่นดินไหว (กิโลกรัม)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>94.2</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>90.12</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>84.28</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>81.41</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>85.2</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>80.53</td>
<td>5</td>
</tr>
</tbody>
</table>

จากตารางที่ 4.9 แสดงค่าจากตัวตรวจรู้การทดสอบการจำลองการเกิดแผ่นดินไหวแบบ 1 มิติ จะได้ค่าความเร็วที่ไม่มีการบรรทุกน้ำหนักและค่าน้ำหนักต่างๆ นอกจากนั้นจะถูกนำมาด้านค่าอัตราเร่ง ซึ่งค่าที่ได้จะมีค่าใกล้เคียงกับผลที่ได้จากการคำนวณที่ได้จากการทดลองในซีเมนต์ ซึ่งจะมีค่าลดลงเมื่อมีการบรรทุกน้ำหนักเพิ่มขึ้น ผลจากตัวตรวจรู้สามารถสรุปได้ว่าการทดสอบที่ไม่มีน้ำหนักการเคลื่อนที่ของยอดอีฟฟิคิจะใช้เวลาในการทำงานน้อยที่สุด จึงทำให้มีค่าอัตราเร่งมากที่สุดและเมื่อมีการบรรทุกน้ำหนักเพิ่มขึ้นก็ทำให้เวลาในการเคลื่อนที่ของพื้นที่เลือนเพิ่มมากขึ้นด้วยที่ทำให้ค่าอัตราเร่งมีค่าลดน้อยลง ตามลำดับ

รูปที่ 4.11 การพร้อมตัวราพื้นผิวจากตัวตรวจรู้การจำลองการเกิดแผ่นดินไหว 1 มิติ
(ก) กรณีไม่มีการบรรทุกน้ำหนัก (ข) กรณีน้ำหนัก 10 กิโลกรัม
(ค) กรณีน้ำหนัก 20 กิโลกรัม (ง) กรณีน้ำหนัก 50 กิโลกรัม
ตารางที่ 4.10 ค่าการเปลี่ยนแปลงค่าอัตราเร่งระหว่างค่าที่ได้จากการอ่านค่าจากตัวตรวจรู้ภัยกับการทดสอบการจำลองการเกิดแผ่นดินไหว 1 มิติ

<table>
<thead>
<tr>
<th>น้ำหนัก (กิโลกรัม)</th>
<th>อัตราเร่งจากการทดสอบ</th>
<th>อัตราเร่งจากตัวตรวจรู้ภัย</th>
<th>ค่าความเสถียร</th>
<th>_stderr</th>
<th>แปลงเป็นจุดความเสถียร</th>
<th>แปลงเป็นจุดความเสถียร</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>98.98</td>
<td>94.2</td>
<td>4.78</td>
<td>4.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>88.51</td>
<td>90.12</td>
<td>-1.61</td>
<td>-1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>87.68</td>
<td>84.28</td>
<td>3.4</td>
<td>3.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>83.91</td>
<td>81.41</td>
<td>2.5</td>
<td>2.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>83.68</td>
<td>85.2</td>
<td>-1.52</td>
<td>-1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>82.73</td>
<td>80.53</td>
<td>2.2</td>
<td>2.66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ตารางที่ 10 แสดงการเปลี่ยนแปลงค่าอัตราเร่งระหว่างค่าที่ได้จากการอ่านค่าจากตัวตรวจรู้ภัยกับการทดสอบการจำลองการเกิดแผ่นดินไหว 1 มิติ ซึ่งพบว่ามีค่าความเสถียรเฉลี่ยไม่เกิน 5 เปอร์เซ็นต์ ค่าที่ได้จะถูกนำมาพิจารณาเพื่อการแสดงต่างในรูปที่ 4.12

รูปที่ 4.12 การเปลี่ยนแปลงค่าอัตราเร่งที่ได้จากตัวตรวจรู้ภัยกับค่าอัตราเร่งจากการทดสอบของการจำลองการเกิดแผ่นดินไหวที่นิวเซา

จากรูปที่ 4.9 แสดงกราฟการทดสอบการจำลองการเกิดแผ่นดินไหว 1 มิติ โดยทำการเปลี่ยนแปลงค่าจากการทดสอบกับค่าที่ได้จากการอ่านค่าความสัมพันธ์ที่ได้จากตัวตรวจรู้ภัยที่เปลี่ยนแปลงไปจากการทดสอบการทำงานของเครื่องจำลองการเกิดแผ่นดินไหว โดยทดสอบที่กรณี
ไม่มีการบรรทุกน้ำหนักโลหะการบรรทุกน้ำหนัก 50 กิโลกรัม โดยทำการเพิ่มปริมาณน้ำหนักชั้นครึ่งละ 10 กิโลกรัม อย่างไรก็ตามค่าที่ได้จากการทดสอบและค่าที่ได้จากการอนำค่าของตัวตรวจรู้ก็ยังมีค่าความผิดพลาดอยู่ แต่ที่มีค่าส่วนใหญ่จะอยู่ที่สามารถระบุง่ายได้จากการทดสอบนี้มีความถูกต้อง

4.3 ขั้นตอน

เครื่องจักรถูกการเกิดแผ่นดินไหว แบบ 1 มิติ ถูกออกแบบให้จัดองการเกิดแผ่นดินไหว โดยใช้ยีนยอกไฟฟ้ากระแสตรงขนาด 350 วัตต์ เป็นต้นกำลัง ควบคุมการทำงานด้วยไมโครคอนโทรลเลอร์ โดยมีตัวตรวจรู้ความแรงทำให้เกิดการสั่นสะเทือนที่ได้ผลการทดสอบการทำงานพบว่าเครื่องจักรถูกการเกิดแผ่นดินไหว แบบ 1 มิติ สามารถจัดการแผ่นดินไหวตัวอย่างตรายังสูงสุด 98 GAL และสามารถรองรับน้ำหนักได้สูงสุดถึง 50 กิโลกรัม