TABLE OF CONTENTS

PREFACE (คำนำ) ... i
ABSTRACT .. ii
ACKNOWLEDGEMENTS .. iii
TABLE OF CONTENTS .. iv
NOTATION .. vi
LIST OF TABLES .. vii
LIST OF FIGURES ... viii

CHAPTER 1 INTRODUCTION 1
1.1 Research context ... 1
1.2 Research objectives 2
1.3 Research methods ... 3
1.4 Expected outcome ... 3
1.5 Layout of the report 3

CHAPTER 2 LITERATURE REVIEW 5
2.1 Introduction ... 5
2.2 Pile foundation .. 5
2.3 Bearing capacity of pile foundations 12
2.4 Stress wave theory .. 14
2.5 Pile integrity testing methods 16

CHAPTER 3 MATERIALS, TEST PROGRAMMES, AND METHODS 21
3.1 Introduction ... 21
3.2 Model piles ... 22
3.3 Equipment and testing devices 24
3.4 Methods and test programmes 25
CHAPTER 4 TEST RESULTS AND DISCUSSION

4.1 Introduction 28
4.2 Pile integrity results and discussion 28

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 47

5.1 Conclusions 47
5.2 Pile integrity results 47
5.3 Recommendation for Future Work 48
5.4 Output of This Research 48

REFERENCES 49
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pile cross sectional area</td>
</tr>
<tr>
<td>E</td>
<td>Pile elastic modulus</td>
</tr>
<tr>
<td>c</td>
<td>Stress wave velocity</td>
</tr>
<tr>
<td>f</td>
<td>Computed bending stress</td>
</tr>
<tr>
<td>f_{pc}</td>
<td>Effective pre-stressed strength</td>
</tr>
<tr>
<td>f_{ult}</td>
<td>Ultimate tensile stress</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>L</td>
<td>Pile length</td>
</tr>
<tr>
<td>M</td>
<td>Bending moment</td>
</tr>
<tr>
<td>Q_0</td>
<td>Ultimate pile bearing capacity</td>
</tr>
<tr>
<td>Q_b</td>
<td>Ultimate pile end bearing</td>
</tr>
<tr>
<td>Q_s</td>
<td>Ultimate pile shaft resistance</td>
</tr>
<tr>
<td>S</td>
<td>Section modulus</td>
</tr>
<tr>
<td>T</td>
<td>Time between the start of a hammer blow</td>
</tr>
<tr>
<td>W_p</td>
<td>Weight of pile</td>
</tr>
<tr>
<td>Z</td>
<td>Pile impedance</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>β</td>
<td>Beta value</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 3. 1 Details of defects made for pile integrity test 26

Table 4. 1 Summary of pile integrity test results for the tested piles having two defects 44

Table 4. 2 Summary of pile integrity test results for the tested piles having one defect 45
LIST OF FIGURES

Figure 2. 1 Different pile configurations for different purposes (Bowles, 1988) 6
Figure 2. 2 Example of splices in timber piles (a) using metal sleeve with ends carefully trimmed for fit and bearing (b) using splice plates (Bowles, 1988) 7
Figure 2. 3 Typical arrangement of reinforcing steels for concrete piles (PCA, 1951; Bowles, 1988) 8
Figure 2. 4 Typical arrangement of reinforcing steels for prestressed concrete pile (Bowles, 1988) 9
Figure 2. 5 Recommended picking up locations for precast concrete piles and there corresponding bending moment (Bowles, 1988) 9
Figure 2. 6 Examples of cast-in-place piles (a) Western uncased pile (b) Franki uncased-pedestal pile (c) Franki cased-pedestal pile (d) welded or seamless pipe (e) Western cased pile (f) Union or Monotube pile (g) Raymond standard (h) Raymond step-taper pile. Depths shown indicate usual ranges for the various piles. Current literature from the various foundation equipment companies should be consulted for designing a pile foundation (Bowles, 1988) 10
Figure 2. 7 Examples of splices for H and pipe steel piles (Bowles, 1988) 11
Figure 2. 8 Shop or on-site fabricated driving points. Labour costs make this generally uneconomical except for small numbers of points. Note that (c) will damage the perimeter soil so that skin friction is reduced in stiff clays (Bowles, 1988) 11
Figure 2. 9 Examples of points for different types of piles. Points are also available in higher-strength steel for very hard driving. (a) (b) and (c) are points for H piles (d) pipe-pile point (f) sheet pile point (Bowles, 1988) 12
Figure 2. 10 Characteristics of load transfer from pile top to pile shaft (Tomlinson, 1994) 13
Figure 2. 11 Impacting a hammer on the pile head (Middendorp, 2005) 14
Figure 2. 12 Stress wave travelling through a rod (Middendorp, 2005) 14
Figure 3. 1 Testing procedures conducted in this research 22
Figure 3. 2 (a) and (b) grinning machine (c) ear noise reduction (d) safety glasses 23
Figure 3. 3 (a) steel hammer (b) chisel (c) steel square (d) vernier (e) vernier in operation (f) hand pulley 23
Figure 3. 4 (a) Model concrete pile (b) (c) detail of defect at 2.5 m from pile top (d) defect at 2.5 m in the field 24
Figure 3. 5 (a), (b) Underground pile (c) testing carried out on the pile under the ground 24
Figure 3. 6 (a) Accelerometer (b) USB cable (c) plasticine (d) nylon hammer 25
Figure 3. 7 (a) NI module for accelerometer connection (b) NI chassis for housing the NI module 25
Figure 3. 8 (a) Pile in the air (b) testing being carried out on the pile in the air (c) a computer 25
Figure 3. 9 Measurement of pile impedance 27
Figure 4. 1 Pile integrity test result for ND-A
Figure 4. 2 Pile integrity test result for ND-U
Figure 4. 3 Pile integrity test result for 2-A0
Figure 4. 4 Pile integrity test result for 2-A5
Figure 4. 5 Pile integrity test result for 2-A10
Figure 4. 6 Pile integrity test result for 2-A15
Figure 4. 7 Pile integrity test result for 2-A20
Figure 4. 8 Pile integrity test result for 2-A35
Figure 4. 9 Pile integrity test result for 2-A50
Figure 4. 10 Pile integrity test result for 2-A65
Figure 4. 11 Pile integrity test result for 2-A80
Figure 4. 12 Pile integrity test result for 2-U0
Figure 4. 13 Pile integrity test result for 2-U5
Figure 4. 14 Pile integrity test result for 2-U10
Figure 4. 15 Pile integrity test result for 2-U15
Figure 4. 16 Pile integrity test result for 2-U20
Figure 4. 17 Pile integrity test result for 2-U35
Figure 4. 18 Pile integrity test result for 2-U50
Figure 4. 19 Pile integrity test result for 2-U65
Figure 4. 20 Pile integrity test result for 2-U80
Figure 4. 21 Pile integrity test result for 1-A5
Figure 4. 22 Pile integrity test result for 1-A10
Figure 4. 23 Pile integrity test result for 1-A15
Figure 4. 24 Pile integrity test result for 1-A20
Figure 4. 25 Pile integrity test result for 1-A35
Figure 4. 26 Pile integrity test result for 1-A50
Figure 4. 27 Pile integrity test result for 1-A65
Figure 4. 28 Pile integrity test result for 1-A80
Figure 4. 29 Pile integrity test result for 1-U5
Figure 4. 30 Pile integrity test result for 1-U10
Figure 4. 31 Pile integrity test result for 1-U15
Figure 4. 32 Pile integrity test result for 1-U20
Figure 4. 33 Pile integrity test result for 1-U35
Figure 4. 34 Pile integrity test result for 1-U50
Figure 4. 35 Pile integrity test result for 1-U65
Figure 4. 36 Pile integrity test result for 1-U80
Figure 4. 37 Percentage difference between measured and actual beta values for the tested piles having two defects
Figure 4. 38 Percentage difference between measured and actual beta values for the tested piles having one defect