บทที่ 3
วิธีการดำเนินงาน

ยางพาราจัดได้ว่าเป็นพืชเศรษฐกิจของภาคใต้ เกษตรกรส่วนใหญ่จึงมีอำนาจทำการสวนยางพารา ซึ่งในขั้นตอนการปลูกยางพาราต้องมีการเพราะสังกัดยังยิ่งทำงพารา ในขั้นตอนนี้เกษตรกรต้องบรรจุดินใส่ถุงเพาะชำ โดยการใช้ข้อสอบถุงหรือถุงกระดาษอื่นๆในการตัดดินใส่ถุงเพาะชำแล้ววางแทรกกับดินถุงเพื่อให้แน่น แต่เนื่องจากเป็นวิธิที่งดงามทั้งดีดียื่นและง่ายในการข้างต้นบรรจุดินใส่ถุงเพาะชำราคาถูกและ 0.40 บาท ด้วยเหตุนี้จึงได้มีการออกแบบและสร้างเครื่องบรรจุและอัดดิน มีมิติเพื่อตอบสนองความต้องการของเกษตรกรและลดปัญหาดังกล่าว โดยได้วางแผนการดำเนินงานต่างๆ ดังนี้

3.1 แผนการดำเนินงาน

การดำเนินงานตามแผนและการดำเนินงานจริงโดยกิจกรรมบางอย่างในการดำเนินการไม่เป็นไปตามแผนเนื่องจากเกิดเหตุฉุกเฉินทำให้เกิดการแก้ไขปรับจัดที่ให้การทำงานถ้าเช่นกันแผนดำเนินงานดังนี้จะมีขั้นตอนและวิธีการดำเนินงานที่ให้วางไว้ ดังแสดงในรูปที่ 3.1

![Diagram of implementation process](image-url)
3.2 การออกแบบเครื่องจักร

3.2.1 หลักการทำงานของเครื่องประจุและอัดดินถุงยางพลาสติกในมิติ จากการศึกษาข้อมูลเบื้องต้นเกี่ยวกับดินและกรรมวิธีของกระบวนการอัดดิน ซึ่งได้นำหลักการดังกล่าวมาประยุกต์ในการออกแบบกลไกการทำงานของเครื่องเพื่อเป็นข้อมูลและแนวทางการทำงานตัดสินใจสร้างชิ้นส่วนต่าง ๆ ของเครื่องจักรให้ได้ตามวัตถุดิบประสงค์ และขอเบ็ดที่จะนำไปใช้

3.2.2 เครื่องมือและอุปกรณ์ ในส่วนของการดำเนินการสร้างเครื่องจะประกอบไปด้วยเครื่องมือเครื่องจักรที่เข้ามาเกี่ยวข้องดังนี้

1) เครื่องกลึง ยี่ห้อ VICTORรุ่น400X1000 G TAIWAN
2) เครื่องกลึง CNCยี่ห้อ MAZAK รุ่น TUNE SUPER 200
3) เครื่องกลัด โยปิริซิโดเชอร์รุ่นแอฟจี 32 (ObraeciStroje Model FG 32)
4) เครื่องกลึงย่อย ยี่ห้อ CAE รุ่น CAE 250 (Automa Model E 250)
5) เครื่องเชื่อมเดิ่กล ยี่ห้อ POWELD-TIG รุ่น PW-310WP-5
6) เครื่องมือกลมมัน ยี่ห้อ TAIWAN

3.1) กลุ่มเครื่องมือที่ต้องใช้ปัจจุบันคือ เหล็กกล้า โลหะ อลูมิเนียม บริษัทจากอินโดจีน ประจำปี

3.2) กลุ่มเครื่องมืออื่นๆที่ต้องใช้ ได้แก่ โลหะ ลวด อะไหล่ เป็นต้น

3.3) กลุ่มเครื่องมืออื่นๆ ที่ต้องใช้ ได้แก่ โลหะ ลวด อะไหล่ เป็นต้น

3.4) กลุ่มอุปกรณ์ที่ใช้ทั้งหมดมีต้องใช้ ได้แก่ ชุดอุปกรณ์ แผ่นพลาสติก ชุดอุปกรณ์ ผ้าแกน

3.2.3 ส่วนประกอบของเครื่องประจุและอัดดินถุงยางพลาสติกในมิติ สามารถแยกชุดโครงออกเป็น 4 ชุดดังนี้ คือ ชุดพลาสติก ชุดสายพานล้อเลื่อน ชุดล็อคอิน และชุดอุปกรณ์

1) ชุดพลาสติก ได้การออกแบบใหม่ ให้มีกลไกจะเป็นอัลตราคาร์บอนเพื่อรองรับการพลาสติก

2) ชุดสายพานล้อเลื่อน ได้ใช้สายพานล้อเลื่อนแบบ NMRV Horrow Shaft 2HP Ratio 1:50 ซึ่งมีการใช้ได้สมนัยกับขนาด จัด และมีช่องได้รับผลิตภัณฑ์ที่ผ่านกระบวนการพลาสติก ออกสายได้อย่างสะดวก
รูปที่ 3.2 ชุดจังหวะมีดินและจุลไปกวนของเครื่องบรรจุและอติตินอุปกรณ์พาร์ร์มเป็นแอตโนมิที่

2) ชุดตายานล้าเลี้ยง รองรับคินที่ผ่านการผสมจากชุดผสมล้าเลี้ยงไปยังชุดป้อน
ดินโดยใช้ตายานแบบถังโปรยขนาด 50 เชมิตร น้ําสบิ่งโดยมอเตอร์รีเลย์แบบ NMRV Horrow
Shaft 1HP Ratio 1:10 ตั้งแสดงในรูปที่ 3.2

รูปที่ 3.3 ลักษณะของชุดตายานล้าเลี้ยง

3) ชุดเปียดนิ้ว กระปุกต่ำที่ผ่านการผสมมาจากตายานล้าเลี้ยงมาเก็บไว้ใน Hopper ใช้อัต
รองรับเตือนไปติดเพื่อส่งสินไปยังระบบต่อที่ผ่านการใส่ดูข้า โดยใช้มอเตอร์รีเลย์แบบ NMRV
Horrow Shaft 1HP Ratio 1:10 แสดงต่อรูปที่ 3.4
4) ชุดอัดคั้น มีลักษณะเป็นถังขนาดใหญ่ รองรับดินที่.flip กระบวนการผสมมากจาก สายพานล้ายล้อม ภายในมีหลาสก์ตั้งระบบที่ทำหน้าที่รองรับดินให้ดิน เพื่อทำการอัดคั้น โดยมี แกนอัดคั้นอยู่ด้านบนซึ่งสามารถอัดได้ครั้งละ 9 กระบะถ้าแสดงถึงรูปที่ 3.5
3.3 การทดลองครั้งที่ 3.5 ลักษณะของจุกป้องกันอัคคีภัย

เป็นการทดลองเพื่อหาค่าความรีว่าในการยึดติดระหว่างการยึดติดหัวแรงงานบนกับเครื่องบารุงและอัคคีภัยจุกยางป้องกันแบบย้อนในมิติ แสดงดังตารางที่ 3.1-3.2 และความสามารถในการยึดบารุงและอัคคีภัยจุกยางป้องกันแบบย้อนในมิติกับแรงงานคน แสดงดังตารางที่ 3.3

ตารางที่ 3.1 การทดลองการยึดติดจุกยางป้องกันหัวระหว่างกับแรงงานคน

<table>
<thead>
<tr>
<th>คนที่</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>\bar{X}_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>เวลาในการยึดติด (นาที/10 ลูก)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ตารางที่ 3.2 การทดลองการบรรจุต้นใส่ตุ่นเพราะข้างพารค์ คู่เครื่องบรรจุและอัดฉีดในถุงยางพาราแบบอัดไม่ใส่มด

<table>
<thead>
<tr>
<th>ครั้งที่</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>จุดรวม (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>เวลาในการบรรจุต้น (นาที)</td>
<td></td>
</tr>
</tbody>
</table>

ตารางที่ 3.3 ความสามารถในการบรรจุและอัดฉีดระหว่างเครื่องบรรจุและอัดฉีดในถุงยางพาราแบบอัดไม่ใส่มดกับแรงงานคน

<table>
<thead>
<tr>
<th>ชนิดการทำงาน</th>
<th>เวลาที่บรรจุและอัดฉีดได้ (นาที)</th>
<th>จำนวน (ปุย)</th>
<th>กำลังการผลิต</th>
</tr>
</thead>
<tbody>
<tr>
<td>เครื่องบรรจุและอัดฉีดในถุงยางพารา</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>แรงงานคน</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

หมายเหตุ: จำนวนปุย แสดงจำนวนปุยที่ได้จากการบรรจุและอัดฉีด。

หมายเหตุ: กำลังการผลิต แสดงกำลังการผลิตที่ได้จากการบรรจุและอัดฉีด。

หมายเหตุ: จุดรวม (X) แสดงจุดรวมของเวลาในการบรรจุต้นในครั้งที่.