บทที่ 2
งานวิจัยและทฤษฎีที่เกี่ยวข้อง

ขาดทุนและค่า [1] ได้กล่าวถึงว่ากับความสำคัญเกี่ยวกับ Lay Out Scrap Strip ว่าเป็นงานอันดับแรกในการออกแบบแม่พิมพ์ ซึ่งจะมีผลต่อตรงต่อผลการผลิตหรือความสูญเปล่าของวัสดุในงานปิ้มทุกชนิด ในบางงานอาจจะหมายถึงการปิ้มผ่านครั้งเดียว แต่ในบางงานอาจต้องใช้การปิ้มผ่านสองครั้งซึ่งจะทำให้ประหยัดวัสดุได้มากขึ้น แต่การปิ้มผ่านสองครั้งจะทำให้กาหนดงานเพิ่มขึ้นประมาณ 10-15% ถ้าสามารถ Lay Out Scrap Strip ได้ประสิทธิภาพสูงมากขึ้นก็จะยิ่งไปใช้ค่าใช้จ่ายส่วนอื่นที่เพิ่มขึ้นได้

การจัดตำแหน่งของซิลิคาน (Blank) บนแผ่นศิริ (Strip) แบ่งได้ 3 ลักษณะ คือ การจัดเรียงซิลิคานแบบเดี่ยวปิ้มหนึ่งทาง (Single Row One Pass) การจัดเรียงซิลิคานแบบเดี่ยวปิ้มสองทาง (Single Row Two Pass) และการจัดเรียงซิลิคานแบบหลายแถว (Multiple Row)

การจัดเรียงซิลิคานแบบเดี่ยวปิ้มหนึ่งทาง

เป็นการจัดเรียงซิลิคาน โดยให้คั่นเลื่อนด้านของซิลิคานเรียงกันไป ในซิลิคานนี้มีรูปทรงซับซ้อนมากจะทำให้สินเปลือกถังค์ ปิ้มได้กับงานที่เป็นรูปทรงของงาน เช่น รูปสี่เหลี่ยมพื้นค่า รูปตัวแอออล (L) เป็นต้น

ภาพที่ 2-1 วงซิลิคานแบบเดี่ยวปิ้มผ่านหนึ่งครั้ง
การจัดเรียงชิ้นงานแบบแถวเสี่ยวปิงปองทรงทาง

เป็นการจัดเรียงชิ้นงาน โดยให้ชิ้นงานอัตโนมัติไปทางหลักด้านกับชิ้นเดิมโดยหมุนไป 180 องศา ในการผลิตจะทำแบบทิ้งฟิล์มเพื่อชุดเดียว แล้วใช้วิธีการป้อนสับข้างกัน มักจะเลือกใช้วิธีนี้เพื่อต้องการประหยัดวัสดุ

ภาพที่ 2-2 วงขั้นงานแบบแถวเสี่ยวปิงปองทรงกรัง

การจัดเรียงชิ้นงานแบบหลายแถว

เป็นการจัดเรียงชิ้นงาน โดยให้ชิ้นงานเรียงเหล็กกันเท่ากันกว่า 1 แถวขึ้นไป ถ้าใช้กันการเคลื่อนชิ้นงานจำนวนมาก เพื่อประหยัดเวลาการทำงานและประหยัดวัสดุ

สมเหตุ [2] เขียนวารสารเกี่ยวกับการออกแบบโปรดิวส์ชี้ด้าน แสดงมาตรฐานการเลือกอุปกรณ์และหน่วยงานที่มีส่วนเกี่ยวข้องกับระบบการมองและการวางต่างๆ และแสดงให้เห็นว่าการขึ้นงานบางกลุ่มนี้จะต้องดำเนินการอย่าง 90 องศา ให้กับผลิตภัณฑ์สูงสุด ดังในภาพที่ 2-3

ภาพที่ 2-3 การวางขั้นงานที่มุม 90 องศา
ประทธิภาพของการจัดเรียงชั้นงาน

ประทธิภาพของการจัดเรียงชั้นงาน (η) คือการคิดคำของ พื้นที่ที่ได้เป็นชั้นงานจริง ค่อยๆที่ต้องใช้ในการป้อนงาน 1 ครั้ง พื้นที่ที่ต้องใช้ในการป้อนงาน 1 ครั้งนี้เรียกว่า พื้นที่แบบชิ้น (Blank Area) ฉะนั้นเราจะนำมาใช้ในการคำว่าคำ ๆ ดังนี้

\[\eta = \frac{\text{พื้นที่ชั้นงานที่ได้}}{\text{พื้นที่แบบชิ้น}} \] (2.1)

สำหรับในการวิจัยครั้งนี้ จะพิจารณาเฉพาะในการจัดเรียงชั้นงานแบบแถวเดียว เพราะฉะนั้นในการหาพื้นที่แบบชิ้นจึงแบ่งพื้นที่ได้เป็น 2 กรณี คือ

กรณีที่ 1 การจัดเรียงชั้นงานแบบแถวเดียวป้อนหนึ่งทาง ดังในภาพที่ 2-4
พื้นที่แบบชิ้น = \(A \times B \) (2.2)

ภาพที่ 2-4 ดีกริยาของกรณีรับพื้นที่แบบชิ้น กรณีการจัดเรียงชั้นงานแบบแถวเดียวป้อนหนึ่งทาง

กรณีที่ 2 การจัดเรียงชั้นงานแบบแถวเดียวป้อนสองทาง ดังในภาพที่ 2-5
พื้นที่แบบชิ้น = \(A \times B / 2 \) (2.3)

ภาพที่ 2-5 ดีกริยาของกรณีรับพื้นที่แบบชิ้น กรณีการจัดเรียงชั้นงานแบบแถวเดียวป้อนสองทาง
การหารีการจัดเรียงชั้นงาน เพื่อให้ได้ตำแหน่งที่ดีที่สุดนั้น ในการจัดการหาโดยใช้ ตน ซึ่งข้อมูลให้ข้อมูลวิธีการหาตำแหน่งการวางชั้นงานโดยให้ใช้วิธีการเขียนแล้วระบายผู้ชั้นงาน ลงบนกระดาษโปร่งแสง แล้วจึงกล่อง ๆ เส้นทางตำแหน่งที่เหมะสมที่สุด ดังในภาพที่ 2-6 เมื่อได้ ตำแหน่งที่เหมะสม แล้วจึงไปกำหนดเป็นขนาดของแผ่น Strip ที่ทิศทางการปิด และระยะของการ ปิด และนำไปสู่การคำนวณหาประสิทธิภาพการจัดเรียงชั้นงานต่อไป ดังในภาพที่ 2-7

ภาพที่ 2-6 การเขียนเส้นรอบชั้นงานบนกระดาษโปร่งแสง และนำไปเลือกตำแหน่งที่
เหมะสม

ภาพที่ 2-7 กำหนดขนาดแผ่น Strip ที่ทิศทางการปิด ระยะปิด และคำนวณหาประสิทธิภาพการ
จัดเรียงชั้นงาน
ในการแก้ปัญหาของการจัดเรียงชั้นงานงานจัดบัตรเสด็จและแบ่งงานให้ไปยังตัววัสดุ โดยไม่มีเกิดการชั่วชั้นกัน ได้มีผู้คิดค้นวิธีการหาค่าตอบและเสนอแนะไว้หลายวิธี ในกรณีที่เป็นชั้นงานรูปทรงทั่วไป จะไม่สามารถหาค่าแทนที่คงที่สูงได้ในเวลาจำกัด การหาค่าแทนที่ใกล้เคียงต้านทางที่ดีที่สุดคงเป็นวิธีหนึ่งในการแก้ปัญหา Jacob [8] ให้ใช้วิธีการแทนขั้นส่วนที่มีรูปทรงต่าง ๆ ซึ่งเรียกว่ารูปทรงโพลีกอน (Polygon) ตัวروعสี่เหลี่ยม และนำมาวางแบบวัสดุให้หยู่ทางชั้นต่างของแผ่นวัสดุ และใช้วิธีแบบแทนแทนตัดอัตราสิบเปอร์เซ็นต์ของโพลีกอนที่ดีที่สุด สามารถจัดเรียงได้รวดเร็ว แต่ประสิทธิภาพของการใช้วัสดุที่มีค่าต่ำกว่าไป Oliveira [9] ได้ขยายวิธีการจัดเรียงโพลีกอนโดยใช้อัตราสิบเปอร์เซ็นต์แบบไม่ฟิตโพลีกอน (no-fit Polygon) ร่วมกับวิธีการ (Greedy Method) และวิธีการนี้เรียกว่า ทูโทป (TOPOS) โดยการวางโพลีกอนลงในแผ่นวัสดุที่ใกล้ชิดโดยเลือกต้านทางที่ว่างแล้วให้ค่าตอบที่ดีที่สุดจนครบบุทั้งหมด คณะนักวิเคราะห์จัดเรียงที่ดีที่สุด Daniel and Milenkovic [10] ได้ทำการวิจัยและสร้างโปรแกรมจัดเรียงขั้นงานลงในแผ่นวัสดุโดยใช้วิธีการอธิบาย (Heuristic) ผลการวิจัยได้ข้อมูลมาเปรียบเทียบกับโปรแกรมการจัดเรียงขั้นงานที่มีใช้อยู่อยู่แล้วและเปรียบเทียบกับการจัดเรียงด้วยความช้าของคน ผลปรากฏว่าโปรแกรมที่สร้างขึ้นจากที่ถือเอาไว้ได้ประสิทธิภาพน้อยกว่าการใช้ความช้าของคนหรือโปรแกรมที่ใช้อยู่ก่อนแล้ว

ผลของการวิจัย [3] ได้ใช้วิธีการหาค่าตอบแทนของผลการทำงานของระบบผ่านวัสดุโดยใช้หลักการของกล Obby (Global Search) คือพิจารณาจากขั้นงานที่มุ่งมุ่งไปที่ต้องการควบคุม 360 องศา ในแต่ละองศาที่มุ่งมุ่งไปจะสร้างกระสักระหว่างการจัดเรียง และนำค่ามุมขององศาที่ให้พื้นที่สัมพันธ์เอื้ออยู่สูงเป็นพื้นฐานในการจัดเรียงงาน จากนั้นทำการคัดลายกรูปทรงจัดเรียงงานตามค่ามุมที่กำหนดให้ต่ำที่สุด 180 องศา เพื่อให้ประสิทธิภาพการจัดเรียงที่มากสุด โดยแบ่งการทำงานเป็น 2 ตอน ตอนวิธี (Algorithm) โดยอัตราสิบกิจกรรมที่ 1 ให้หาพื้นที่สัมพันธ์แกลงต่ำสุด ตอนวิธีที่ 2 หาจำนวนมากสุดของรูปสี่เหลี่ยมที่ครอบรูปทรงจัดเรียงแล้วนำไปปรุงจัดในแผ่นวัสดุ ดังในภาพที่ 2-8
ภาคที่ 2-8 การใช้สิ่งเหล่านี้มีการซึ่งกันในระดับต่าง ๆ

ภาคที่ 2-9 การจัดเรียงขั้นงานที่ได้จากการประมาณชั้นงาน

เมื่อนำโปรแกรมไปใช้งานเพื่อเปรียบเทียบกับโปรแกรมที่มีการใช้งานอยู่ก่อนแล้ว และเปรียบเทียบกับการจัดเรียงโดยใช้ความช้ามูดของก้อน ผลปรากฏว่า โปรแกรมที่สร้างขึ้นบางครั้งก็ให้ประสิทธิภาพที่มากกว่า บางครั้งก็ให้ประสิทธิภาพเท่ากัน และบางครั้งก็ให้ประสิทธิภาพน้อยกว่า

การหาต้นแหล่งการวางชั้นงานโดยการหมุนชั้นงาน โปรดวิทยากรให้คำทำความละเอียดของกระบวนการเพื่อที่จะหาต้นแหล่งการวางที่ดีที่สุดนั้น เป็นวิธีการที่ใช้กันโดยทั่วไป สำหรับประมาณผลที่จะหาว่ามันใด้ที่ให้ประสิทธิภาพมากสุดนั้น ไม่แต่จะอธิบายชัดเจนว่ามีวิธีการหาที่แตกต่างกันออกไป
ในส่วนของการหมุนชิ้นงานนี้ จุดที่เป็นศูนย์กลางของการหมุนหรือที่เรียกว่า Base point นั้น ควรจะเป็นจุดที่มีอุณหภูมิชิ้นงานไปแล้ว ไม่ทำให้ตัวแหน่งของเส้นแต่งต่างไปจากเดิมมากนัก จุดที่ให้คุณสมบัติดีจุดหนึ่งก็คือ จุดศูนย์กลาง (Centroid) ของรูปทรง

จากภาระที่ 2-10 คือ ตัวอย่างเส้นรอบรูปชิ้นงาน ซึ่งจะได้เป็นตัวอย่างในการหาจุดศูนย์กลางของเส้นทั้งหมด}

ภาพที่ 2-10 ตัวอย่างเส้นรอบรูปชิ้นงานที่แสดงการหาจุดศูนย์กลาง
ภาพที่ 2-11 ด้วยอ่างการหาจุดศูนย์กลาง โดยการคำนวณโมเมนต์ของเส้นรอบรูป

วิธีการหาจุดศูนย์กลางของเส้นรอบรูป

ถ้าให้ \(X_m \) คือระยะที่ของจุดศูนย์กลางไปยังจุดกันนิคมทางแกน \(X \)

\(Y_m \) คือระยะที่ของจุดศูนย์กลางไปยังจุดกันนิคมทางแกน \(Y \)

\[
:\quad X_m = \frac{X_1 S_1 + X_2 S_2 + X_3 S_3 + X_4 S_4 + X_5 S_5}{S_1 + S_2 + S_3 + S_4 + S_5} \quad \text{..................................(2.4)}
\]

\[
:\quad Y_m = \frac{Y_1 S_1 + Y_2 S_2 + Y_3 S_3 + Y_4 S_4 + Y_5 S_5}{S_1 + S_2 + S_3 + S_4 + S_5} \quad \text{..................................(2.5)}
\]

โปรแกรมที่ได้แก่ดัง ทุกการใช้งานสามารถมีผลลัพธ์ที่ต่างกันขึ้นช่วยในการคำนวณคำวิภาษ

กราฟที่ต่าง ๆ แล้วนำไปทำนายข้อมูลส่วนต่าง ๆ ของอื่นได้ผลที่มีอยู่ติดต่อกัน ซึ่งผู้ใช้งานได้ใช้

ภาษาอังกฤษได้ถูก นี้ในการทดลองอักษรย่อที่ออกแบบขึ้น